Draft Report

March 20, 2006

Issues in Open Ended Vulnerability Testing—DRAFT

John Kelsey, NIST, March 2006

1. Introduction

In resolution 17-05, the members of the TGDC agreed that evaluation of voting systems in the future should involve open-ended testing.

The TGDC directs NIST to research and draft standards documents requiring testing of voting systems that includes a significant amount of open-ended research for vulnerabilities by an analysis team supplied with complete source code and system documentation and operational voting system hardware. The vulnerabilities sought should not exclude those involving collusion between multiple parties (including vendor insiders) and should not exclude those involving adversaries with significant financial and technical resources.

We can most efficiently define open-ended testing by contrast with the kind of testing that is common on most electronic systems, including electronic voting systems. Most of the review and testing done by a Voting System testing Laboratory (VSTL) on a voting system will inevitably be testing for compliance. That is, the standards will specify that some security control
 is to be used, and the VSTL will verify that it is, in fact, being used. We use the term “open-ended testing” to refer to testing which checks whether the security measures in place are really enough to prevent an attack, most often by trying to defeat those security measures in some way. For example:

· Normal testing reviews source code to ensure that the coding standards are being followed, and that the code does what its documentation says it does. Open-ended testing reviews source code for vulnerabilities, both by automated search and by careful human review.

· Normal testing reviews operating system security to ensure that event logs are kept, with the right events being logged. Open-ended testing reviews whether the event logs actually capture the events they’re supposed to capture, and whether there’s some way for an attacker to alter the logs before they can be reviewed.

· Normal testing reviews communication security to ensure that appropriate standards are being followed—for example, that TLS is used to secure a link, and that the keys are managed properly. Open-ended testing examines the full system to see whether there is some way to bypass the cryptographic protection used.

Normal testing is relatively straightforward, and one properly done evaluation should turn out very nearly identical to another. Different labs reviewing the same system at different times should come to very similar conclusions about the acceptability of the voting system. There is a clear point at which the testing is finished, and this makes budgeting for the test straightforward. When a system passes this test, it means that the VSTL has verified that the system complies with the standard. While there will be small variations in outcomes between evaluations (for example, a more diligent reviewer may notice some deviations from the standard that a more lax reviewer doesn’t catch, especially where the standard is itself somewhat broadly defined), a voting system must be in substantial compliance with the standard if it is to pass this kind of evaluation.

Open-ended testing is inherently much less straightforward. Two different evaluations may not use the same attacks or tools, and are thus rather hard to compare. There’s often no clear point at which the testing is finished, because while automated testing tools are useful, human review is also necessary. When a system passes an open-ended evaluation, it means that the VSTL has not found any substantial weaknesses in the system, but this doesn’t guarantee that another reviewer would not have found some weaknesses.

Normal testing is like asking a policeman to check your doors, windows, locks, and lighting to make sure they’re good quality and are installed correctly. Open-ended testing is like asking a professional burglar to see if he can get into the house and steal your television. Both have value, and each tests a somewhat different part of your security.

1.1. Why Do Open-Ended Testing?

There are limitations to open-ended testing: It can be expensive, it isn’t repeatable, and it’s hard to determine when enough of it has been done. This raises the question: Why do open-ended testing at all?

The answer is that no checklist or standard can guarantee a secure system. Because of this, open-ended testing is necessary at a number of different levels in a voting system:

· Because strong components can always be combined into a weak system, evaluators must look at the voting system as a whole, and attempt to find ways to subvert or disrupt the election or violate voter privacy. For example, the Diebold system reviewed by the RABA report used smart cards with passwords that should have protected them from duplication or misuse. However, the passwords appeared in the system source code (which had been posted to the internet by mistake), and so these strong components were bypassed and a variety of attacks became possible.

· Because strong security controls are often used incorrectly or fail to fully protect important resources, evaluators must examine whether the protection mechanisms are effective at preventing various prohibited behaviors that could lead to an attack. For example, the RABA report discovered a misapplication of the SSL cryptographic protocol, which would have allowed an attacker to intercept the transmission of electronic results to the tabulation center and tamper with those results in transit, despite the cryptographic protection.

· Because knowledge about attacks and weaknesses advances faster than standards change, evaluators must check that the security of the components of a voting system are still secure, despite any recent, newly disclosed attacks. For example, the RABA report described a number of known security issues with the GEMS server used in the Diebold system for collecting and tabulating the votes which had not been addressed. This left the system vulnerable to a number of attacks.

· Because all voting systems depend critically on procedures carried out by election officials, evaluators must verify that the procedures spelled out in the vendor documentation are sufficient to ensure good election security, and that those procedures can reasonably be expected to be followed.

It’s worth noting that any of these problems might have been detected by checklist testing, if the standard writers had anticipated the problem. Open-ended testing is valuable precisely because standard writers can’t anticipate every problem and specifically exclude it.
1.2. Tradeoffs Between Open-Ended and Checklist-Type Testing

The main value of OEVT is to test parts of the voting system which can’t be standardized in a consistently secure way. Where security controls like approved encryption algorithms can be specified and verified, it’s more efficient to do this. OEVT can then be used to check that the encryption algorithms are being used correctly—more generally, to check that the resources being protected by required security controls are, in fact, being protected.

1.2.1. Code Review

While OEVT isn’t the same thing as code review, the OEVT team must be given full access to the source code of the voting system, and it’s likely that the same people will sometimes be involved in both kinds of testing. Code review involves verifying compliance with coding standards, verifying the absence of obvious backdoors or hidden functionality by inspection, and looking for software vulnerabilities that might lead to attacks on the voting system. Of these, only the last is part of OEVT. During the code review, off-the-shelf tools should be used to check for common vulnerabilities, but during OEVT, the evaluators will analyze specific parts of the source code for vulnerabilities in depth.

1.3. Existing Open-Ended Evaluations

1.3.1. Voting Systems

In the last few years, a number of high-profile published attacks have taken place to demonstrate, in laboratory conditions, that voting systems could be attacked. Probably the best documented and most professional of these appear in the RABA report. In that report, a number of vulnerabilities are discovered and analyzed, with the goal of demonstrating attacks on a particular real-world voting system.

One striking thing about the RABA report and the other reports along these lines is that it appeared that the evaluators ran out of time and resources long before they ran out of vulnerabilities, and that different evaluators, even working from the same documentation and copies of one another’s’ reports, often came up with different attacks! Another is that the evaluators spent some substantial amount of time constructing full attacks out of vulnerabilities that, once demonstrated, were sufficient to call the security of the voting system into question. A third important lesson from these reports is that many of the problems discovered were fairly simple to fix, once they were discovered. Had this kind of analysis been done before the systems had been sold to various states, those vulnerabilities would have been closed, and hopefully, the voting systems would have been much harder to attack as a result of this.

1.3.2. Open-Ended Testing of Non-Voting Systems

The kind of analysis proposed in this document is new. However, various forms of open-ended analysis and penetration testing are used in specific areas of computer security. In addition, there are many tools available for carrying out some level of automated security testing.

1.3.2.1. Cryptographic Algorithms and Protocols

Cryptographic algorithms and protocols are evaluated in an informal way within the cryptographic community for many years, before seeing widespread use. Some examples of formal periods of evaluation used for cryptographic mechanisms include:

· RIPE

· AES

· NESSIE

In addition, standards organizations such as the IETF, IEEE, X9, and ISO usually wait for at least an informal consensus to come about within the cryptographic community before choosing to standardize an algorithm or protocol.

1.3.3. Cryptographic Devices and Implementations

Open-ended testing is commonly done against special-purpose cryptographic modules, which are also evaluated against elaborate checklists of requirements.

1.3.4. Secured Networks

Penetration testing is reasonably common for networks, and some companies offer this service commercially.

1.3.5. Operating System Security Mechanisms

Operating systems and widely-used programs are subjected to a kind of unstructured version of this, as people are asked to look for vulnerabilities.

1.4. Issues to Discuss in This Paper

This white paper is intended to describe our approach to OEVT at a high level, and then to surface a number of important policy issues for discussion and decisions by the TGDC and EAC. We will also surface some technical issues, which we intend to resolve by further research and consideration over the coming months.

2. High Level OEVT Approach

2.1. Overview

At a high level, the OEVT process will proceed as follows: First, the vendor will submit a voting system, including some sample machines, all software (including source code for non-COTS software), all devices required for the election, and a full set of security and documentation and description of procedures as they are to be given to the election officials. The evaluators will then review these things, looking for potential attacks. They will develop a list of problems, and the details of this list will determine whether the voting system fails automatically, passes, or whether the decision of whether it passes or fails requires more information or some policy decision from the EAC. Where problems are obviously correctable, the evaluation team should provide some minimal guidance for how to correct them, but it must not become involved in the design of the voting system beyond that minimal guidance. When all the critical problems have been corrected and the system passes, a final report is produced about the findings of the open-ended evaluation on the final system. This includes any attacks or problems which are known, but which have been deemed not to undermine the security of the full election system. At least some version of this report should be made public.

2.2. Inputs from Vendor and Rules of Engagement

The evaluation process begins when the vendor provides some sample hardware sufficient to run a full (very small) election. Some minimal number of voting machines will be needed, and they may suffer some damage or even be destroyed in testing. (This may be necessary for testing physical security, for example.) Full details of the system are given to the evaluators, including source code for all voting system software. The evaluators may be required to agree not to disclose the internal details of the system. The vendor provides a full description of the required procedures for running the election correctly, including procedures for recounts. The vendor must also provide a thorough description of how the election system works, including how all information flows between the components, how software is updated on the machines, and how results and event logs are recovered and checked after an election.

Along with all the other details, the vendor also provides security documentation. This explains how the specific security goals of the system are met, providing a broad argument for the security of the voting system. The security documentation should explain what defenses prevent each broad kind of attack on the voting system (tampering with the election outcome, violating voter privacy, disrupting the election, and discrediting the election). For each intermediate attack goal (see below) which applies to this voting system, the security documentation should specify what security controls are intended to prevent the goal being achieved.

The evaluators require some rules of engagement—basically, the limits they put on themselves. These will include such questions as how long a physical attacker is assumed to have to carry out an attack on a voting machine, which roles the evaluator is allowed to take on in the voting system, what inputs he is allowed to provide, etc
; the more powerful the evaluator, the more meaningful the evaluation. The rules of engagement must be included exactly in the final public report from the evaluation, because they determine how the results should be interpreted.

The evaluation is only meaningful if the materials provided to the evaluators are representative of the ones used in the field. It is critical that the tested system is the same as the one that is fielded. Some measures must be taken to ensure that this is the case, but these are outside the scope of our standards.

2.3. Attacks and Intermediate Attack Goals

Open-ended evaluation of a voting system involves determining whether some action the evaluator manages to do represent a weakness in the voting system. We propose two different ways to determine when the evaluators have revealed an important security problem in the voting system, both of which, when found, lead to failing the voting system:

· Full attacks on the voting system are actions taken by the evaluators that, if carried out on Election Day, would lead to an attack on the voting system. The attacks we are concerned with for this analysis include:

· Insiders (as specified by our rules of engagement) changing the outcome of an election.

· Insiders determining how specific voters voted without their cooperation.

· Outsiders disrupting an election with a low probability of being caught at a crime.

· Outsiders discrediting an election by causing apparent false evidence of fraud to be produced, or preventing true evidence of correct operation from being created.

· Intermediate attack goals are actions taken by the evaluator which violate some critical security goal of the voting system. Other components of the voting system may or may not prevent a full attack from working; however, this represents a major failure in security. Generating a list of these intermediate attack goals is an interesting technical issue. However, there are a number of straightforward examples:

· Given access to a voting machine and all its internal memory, reconstruct the order of voters.

· Given complete control of one voting machine, tamper with the operations of the tabulation center computer.

· Cause the execution or installation of any piece of software on a voting machine without proper authorization.

· Cause any event that is supposed to be logged to occur without an entry appearing in the event log.

· Given complete control of the tabulation center computer, tamper with the operations of the voting machine.

· Given physical access to the voting machine for N minutes unobserved, gain access to any critical internal parts of the system without leaving evidence of tampering.

· Tamper with any electronic records from the election either on the voting machine, in transit, or on the tabulation center computer, without detection.

There are two important reasons to use intermediate attack goals, as well as full attacks:

· The evaluators’ time and resources are limited. By letting them stop at these intermediate attack goals, we more efficiently use their time; having discovered a weakness that should not be in a voting system, it makes more sense to have the vendor close that weakness than to spend more resources having the evaluator work out how to turn it into an attack. This translates into either a less expensive evaluation process, or more money available for other parts of the testing of the voting system.

· Failing a system for intermediate attack goals encourages defense in depth; the voting system should have many levels of secure components which must be defeated to compromise an election, since a real-world attacker may be smarter and better funded than the open-ended evaluation team. Thus, we allow an intermediate attack goal like tampering with the operations of the tabulation center, given control of a voting machine. The attacker should never gain control of a voting machine (that’s the subject of several other intermediate attack goals), but if he does, he had better not be able to take control of other computers from that one.

2.3.1. Interfacing with the Rest of the Standard

Intermediate attack goals also offer a way for the open-ended evaluation to be linked into the rest of the standard. All the security controls mandated for a given voting system are there to accomplish some goal; those parts of the standard can specify not only the required security control, but also an intermediate attack goal which, if reached, would represent undermining that security goal.

The main requirements for an intermediate attack goal are:

· Accomplishing it must demonstrate a failure in some part of the security of the voting system.

· The evaluator must be able to unambiguously demonstrate that it has been accomplished.

· The fact that it has been accomplished should be serious enough to cause the voting system to fail evaluation.

2.4. Process of Evaluation

The purpose of the evaluation is to take those inputs from the vendor, and check the security claims of the voting system by trying to find weaknesses or attacks. The following steps are listed in approximate order, but information will flow between the steps. In addition, members of the evaluation team may be involved in the normal testing of the voting system.

2.4.1. Overall Review of Voting System

The most open-ended part of the analysis is an overall review of the voting system, based on the machines, software, and security documentation. The goals here are:

· To apply the results of the threat analysis document, and any other ideas the attacker may have, to attack the voting system.

· To look for weaknesses in the design that allow an attacker to bypass the security controls that are in place.

· To highlight particular points of concern in the voting system that can be more carefully analyzed later in the evaluation.

· To determine whether there are flaws in the underlying security reasoning going into the security documentation. (For example, if a listed security control doesn’t prevent some intermediate attack goal, this should at least be pointed out.)

If potential attacks on the design of the voting system are found, the evaluators may try to determine if there are simple fixes, or obvious errors in the documentation leading to the attack. If not, the initial result needs to be reported back to the vendor, and depending on the details, it may not make sense to continue the evaluation until the design flaws are corrected.

If the vendor documentation is incomplete or unclear in some important area, the evaluators can request further information from the vendor. It will usually make sense to wait for the documentation to be complete before continuing with the evaluation. We expect that it will be reasonably common for the evaluation team to contact the vendor at the end of this step, and request corrections and clarifications before continuing the evaluation.

2.4.1.1. Conditions for Failure

The voting system unambiguously fails if:

· The evaluators can demonstrate a complete attack on the voting system, allowing insiders to substantially change the outcome of the election or outsiders to disrupt it without high probability of getting caught, on the equipment and with the procedures given. This will be based partly on the ongoing work on threats on voting systems being done by NIST and the Brennan Center.

· The security documentation does not address all the high-level attacks, or leaves out any applicable intermediate attack goals.

The vendor should be contacted for corrections and clarifications where there are questionable or incomplete areas of the security documentation, as these may be easy to resolve at this point.

2.4.1.2. Useful Intermediate Outputs from Analysis

The most important output of this step is likely to be an understanding of which parts of the voting system need special scrutiny. The security documentation also gives the evaluators some notion of what the designers of the system think are the important security controls.

2.4.2. Review of Procedures

The specified procedures are an integral part of the voting system. The evaluators must review the procedures that are assumed for the security of this voting system, and answer the following questions:

· Do the procedures address the threats they’re required to address?

· Are the procedures reasonable for election officials to follow?

· What are the consequences if the procedures are not followed?

· What evidence would be produced by following these procedures or failing to follow them? Would anyone notice which was done?

This part of the open-ended evaluation seems to us the most likely source of ambiguity in the evaluation. In particular, whether a set of procedures is practical or not will inevitably be a matter of debate.

Note that the security documentation must address why the specified procedures accomplish their specific security goals. Among the procedures which must be specified:

· Storing the voting machines safely

· Setting up voting machines and loading ballot definitions.

· Updating voting machine software

· Running an election

· Running a recount

· Disaster recovery

2.4.2.1. Conditions for Failure

The voting system unambiguously fails if:

· The procedures given can be shown not to provide the security claimed for them. For example, if the specified procedures for ensuring that the voting machines start the day with no stored votes do not ensure that, then the voting system fails.

· The procedures given don’t work with the hardware and software provided. This simply has to be fixed before the rest of the evaluation can continue.

· The procedures are obviously impractical for the election officials to use.

2.4.2.2. Useful Intermediate Outputs from Analysis

This step of the analysis provides the evaluators with knowledge of what procedures are critical for system security. This can guide later analysis in which the software or hardware supporting those procedures is attacked to subvert the critical procedures.

2.4.3. Automated and Manual Searching for Known or Suspected Vulnerabilities

Each component of the system can be checked against lists of known weak components. That is, each software component can be checked to see if it has known weaknesses, the configuration of the operating system and the installed services can be checked to see whether they include things that are known to be weak, etc.

This is probably the least ambiguous, least open-ended part of the analysis.

2.4.3.1. Conditions for Failure

The voting system unambiguously fails if:

· The evaluators find one or more components which both:

· Are known to have some weakness

· Through that weakness, allow either an attack on the full voting system or the achievement of one of the intermediate attack goals.

· The evaluators find too many known weak components.

· The evaluators find weak components, and the weakness applies directly to how the component is used. For example, if a component is known to be weak if the machine it is installed on has network access, and the voting machine has network access, then the voting system is failed.

The “open-ended” part of this analysis comes after known weak components are found. The evaluators must determine whether the weaknesses in the components make the system vulnerable. However, before that’s done, the evaluators should report these known weak components to the vendor, and ask whether updated software can be made available. Ideally, the vendor would respond with either patched software or explanations of why the remaining known weak components could not lead to vulnerabilities in the full voting system.

An interesting policy/technical question arises when there are known vulnerable components for which no full attack on the voting system is known. Our current plan is that known to be vulnerable components should always be patched, replaced, or eliminated. However, in cases where no patch or replacement is available, they may be allowed if there is no chance of a vulnerability being introduced into the voting system. This typically means that the weak component is shielded from any unverified or untrusted input. For example, many software attacks are known based on passing untrusted input to a regex or SQL engine. A known vulnerability in one of these engines could be mitigated by ensuring that untrusted input isn’t able to get through. In this case, the evaluator would fail the system if he could get any invalid or untrusted input into the system.

2.4.3.2. Useful Intermediate Outputs from Analysis

To the extent that there are huge numbers of known weak components, the output from this analysis is too time-consuming to use. Most of the useful output from this step should go directly to the vendor, and should lead to his updating all the weak components for which updates or patches are available.

2.4.4. Intermediate Attack Goals and Analysis of Components

Using all the information provided by the vendor, the evaluators now attempt to carry out any of the intermediate attack goals. Although the evaluators will have physical access to the voting hardware and passwords for accounts on the machines when these exist, the specific intermediate attack goals and the rules of engagement will determine what resource can be used in attempting to meet the intermediate attack goal.

If there are a relatively small number of intermediate attack goals which are relevant, then each should be attempted, and some notes about the attempt recorded in the final report. If there are a large number of intermediate attack goals, this may not be practical—in this case, the evaluators must specify which goals they attempted to reach, and why they chose these goals.

2.5. Deciding Pass or Fail

After the evaluation has been completed, the evaluators may already be certain that the system has either passed or failed. For example, if any of the conditions for failing the system listed above have been met, the system will be failed. If no real problems have been discovered, or all such problems have been resolved, the voting system will pass evaluation.

In some cases, the situation will be more ambiguous. For example, there may be issues with the specified procedures that need further consideration, or there may be a large number of problems that individually don’t lead to failing the system, but which may sensibly result in failing the system. There will have to be some mechanism for resolving this kind of case.

Ambiguity in the outcome of the evaluation is bad for everyone: Vendors end up unsure what is required for success, evaluators end up uncertain where to concentrate their efforts, and state election officials and the public end up unclear on what the evaluation means. In the worst case, the decision to pass or fail a voting system could be the result of a negotiation between a voting system vendor who is writing checks and the VSTL that is cashing them.

This is one of the main reasons for the intermediate attack goals on our conception of OEVT for voting systems—they remove much of the ambiguity in the results of the evaluation. They also give both vendors and evaluators guidance about where to focus their efforts.

2.6. Reporting Results to the Vendor

As described above, some intermediate results should be reported back to the vendor, especially where a problem is likely to be easily fixed. For example, software that hasn’t been patched to close some known security holes is almost always going to be smarter to patch than to analyze for whether those security holes allow the compromise of the whole voting system.

The final report to the vendor must specify what was looked at, and what the results were. If the system is failed, each known cause of failure is reported, along with any brief suggestions for how the problem could be fixed. It is critical that the evaluators not become involved in the design of the voting system, because they will almost certainly be evaluating the fixes later. However, simple recommendations, along the lines of “put individual passwords on the smartcards” or “turn on TKIP on the wireless network” are entirely reasonable.

Additional concerns which may raise potential problems, but weren’t enough to cause the system to be failed, should also be reported to the vendor. The vendor should be encouraged to fix those problems.

2.7. Interaction and Resubmission of Systems

Systems which fail will usually be resubmitted. While there is no requirement that they be resubmitted to the same evaluation team (it would be better in security terms if many teams evaluated the system), the cost of re-evaluating a system with which the team is already familiar will be much lower than that of evaluating a new system.

The interaction between the evaluators and the vendors offers an opportunity for large improvements in security.

2.8. Final Public Output

The final report will be provided to the vendor, but will also include a public report which must be made available at least to any election official who considers buying the voting system, and probably should be made available to the public.

This must include:

· The documentation and procedures assumed for the evaluation.

· The rules of engagement for the evaluation.

· The list of unresolved non-critical issues in the voting system.

· A full description of the hardware and software reviewed, including versions of COTS software used, and SHA256 hashes of all source code supplied by the vendor, and also including pictures and diagrams of the hardware sufficient to make it easy to tell if the same hardware is being described in the report as what is being used. COTS hardware components used in the voting system must be listed and described.

· A high-level description of what was considered in the evaluation, and what conclusions were reached. This mustn’t reveal proprietary details of the voting system which were given under NDA, but must describe what sorts of things were evaluated. For example, “Because the smartcards are critical parts of this voting system’s security, we verified that the vendor’s procedures would put different PINs on each smartcard, and that the smartcards would cease to function after ten incorrect PINs were entered in a row. We also attempted to compromise the information on the smartcard by communicating with it via a standard smartcard reader, using the interface provided by the manufacturer of the smartcards.”

2.9. Conclusions

This section is intended as a high-level summary of our current approach to OEVT. While many details are not yet understood, this summary should be sufficient to motivate the discussion of policy and technical issues that follows.

3. Open Policy Issues

A number of policy decisions will need to be made regarding OEVT of voting systems. In this section, we consider some important questions that will have to be answered. Many of these issues overlap with technical issues, and the answers will be based on an overlap of technical and policy considerations.

3.1. Goals

We propose a set of high-level goals for the open-ended testing process:

· The process should be as transparent as possible, without revealing either proprietary information of the vendors or information that makes the voting systems more susceptible to attack in the field.

· The process should use testing resources efficiently.

· The process should improve the quality of voting systems that go through it.

· The results of testing should be as consistent as possible.

Evaluation should improve justified public confidence in voting system security. Making the testing program as transparent as possible will help accomplish this goal. However, this must be balanced against the problems of disclosing proprietary information of both the vendor and the VSTL, and against the bigger problem of disclosing information that would help real-world attackers.

The goal of open-ended testing is not to demonstrate that voting systems are vulnerable to attack—we already know that, because essentially all real-world computer systems are vulnerable to attack. Instead, the goal is to improve the security of voting systems against real-world attackers. This suggests that the process of preparing a submission package for evaluation should lead vendors to a better understanding of their own security, and that VSTL feedback from the evaluation, whether it is passed or failed, should provide useful guidance on how to fix the problems found.

Open-ended testing is inherently less repeatable than other kinds of testing. A different set of evaluators will often find somewhat different problems. However, the procedures and rules for testing can be made consistent—the same or very similar rules of engagement, pass/fail criteria, and high level goals are used by all VSTLs.

3.2. Money and Resource Allocation Issues

There are three major issues involving money and resource allocation:

· Testing a voting system’s security can be expensive, and open-ended testing is especially expensive. Detailed requirements for OEVT cannot be written without an estimate of what resources will be available for security testing.

· Once an approximate budget for security testing (as opposed to usability testing and other requirements testing) is determined, a tradeoff will exist between checklist testing and open-ended testing.

· A business relationship will exist between a voting system vendor and a VSTL, and the ability to do business together in the future may be important to both. Arrangements must be found that will minimize the impact of that business decision on testing results. Among the measures that may be useful are clear fass/fail criteria (to minimize the amount of negotiation about results) and a lab accreditation process that encourages meaningful and independent lab results.

3.2.1. How Much Money is Available for Testing?

The most important question is how much money is likely to be available for evaluation. It is hard to imagine this open-ended evaluation process costing much less than $100,000 if done properly, and a more thorough job might cost two or three times this. This is in addition to other testing, such as checklist security testing, usability testing, and hardware reliability testing.

3.2.2. How Should Resources Be Allocated in Security Testing

The second question is how this money should be allocated between the more straightforward checklist-type testing and open-ended testing. Checklist testing has a lot of value—it can make sure that systems are using the required security controls, and to an extent verify that they’re used in the right ways, and in many cases, it is relatively cheap to verify that a large set of potential attacks is blocked by the use of the right kind of security controls.

On the other hand, the open-ended analyses we’ve seen of voting systems demonstrate that the checklist approach is simply not sufficient to provide security in the face of real attackers. The Hopkins report was written by three academics with access to nothing but some leaked source code, and yet it revealed weaknesses that had not been corrected as a result of the ITA review. The SAIC report presumably found many problems, given the long list of procedural defenses imposed. However, most of their findings were redacted. The RABA report found a long list of problems, many of which could have been used by themselves or in combination with procedural attacks to undermine real elections. Better ITA testing might have caught some of these problems, but would likely not have found them all. Open-ended testing is the best way we can find to tighten the security of these voting systems.

This is a policy question, but one that will have to be reconsidered over time, as we get more insight into how effective open-ended testing can be with more thorough standards. There is a wide range of choices available here, ranging from giving the VSTL a couple days to do some open-ended evaluation once all the checklist-type testing is done, to spending many times the resources of the checklist-type testing on the open-ended evaluation.

3.2.3. Who Pays the Bill? Incentives and Testing

Many people have commented on the incentives facing the testing labs. Voting system vendors and testing labs are often in a long-term business relationship—the vendor plans to resubmit future revisions and new systems to the lab, and the lab is paid for doing the testing. This raises both the possibility and the appearance of a conflict of interest.

At present, our best recommendation is to try to remove as much ambiguity as possible from the evaluation results. When some requirement is clearly not met, or some intermediate attack goal is clearly demonstrated, there is little room for negotiation—a vendor may decide not to use the VSTL in the future, but probably cannot avoid addressing the problem that was demonstrated. This motivates the use of intermediate attack goals in the analysis.

A second recommendation is to make the accreditation of the labs dependent on the quality and independence of its work. Programs such as FIPS-140-1 involve similar incentive issues, but appear to provide substantially independent evaluation of submitted devices.

An interesting related financial question involves retesting. When a voting system fails evaluation, it will presumably be updated and retested. How is this paid for? A fixed price for the full evaluation will limit the resources available for retesting. On the other hand, a voting system that may have to retest many times could become arbitrarily expensive to get through the VSTL if each retest is charged separately.

3.3. Interaction Between VSTLs and Vendors

Many policy issues revolve around the interaction between voting system vendors and VSTLs. The interaction should be consistent, and should be designed to allow the testing process to improve the security of the final voting system. The final report to the vendor should help to improve future voting systems. (A related public report will be described below.)

The important policy issues center on three broad questions:

· What information must the vendor provide in the evaluation package, and what, if anything, may be withheld?

· How should the rules of engagement for the evaluation be negotiated?

· What information should be provided back from the VSTL to the vendor?

3.3.1. The Submission Package

The evaluation can’t start until the vendor puts together a package of all the required information. We will call this the submission package. Most of the contents of this submission package are determined by technical considerations. For example, full source code from the vendor’s programs, a listing of all COTS software (including versions) and hardware suppliers and versions, and security documentation as discussed above, along with some sample machines, have to be provided.

3.3.1.1. Ensuring the Honesty of Submissions

The most important policy issue with regard to the submission package is how we can ensure that the submission is an accurate representation of the system that will be used in running elections. This is a common problem for any kind of testing (it arises in crash testing of cars, for example), but for open-ended evaluation, it is especially severe, because it is possible for fairly minor changes to the system to substantially change the outcome of the evaluation. For example:

· Changing OS parameters or system settings may make the system much harder to attack, at the cost of degrading performance or usability for voting officials.

· Putting the same password on each machine by default, or having all the voting machine locks use the same key, may make the system cheaper to manufacture and use. It would be easy for the vendor to change this for the evaluation version.

· Sturdier physical construction of voting machines may make them harder to tamper with, but may also increase production costs.

In all three examples, the assumption is that the vendor is knowingly making a tradeoff between security and other goals, but doesn’t want to reveal this to the evaluation team. This kind of submission of an “armor-plated” version of a product is an explicit concern of organizations that crash test cars, because it’s always possible to make a car more resilient to crash damage by making it heavier and more expensive to build.

This is a crucial issue for ensuring that the results of the testing are meaningful, but it is outside the scope of our standards.

3.3.1.2. Ensuring the Accuracy of Submissions

A related issue involves unintentional submission of bad information. For example, an older version of the source code might be accidentally provided to the evaluation team. Good procedures need to be developed to minimize the chances of this.

3.3.1.3. Attackers Within the Vendor

Finally, there is the possibility that an intentional attacker within the voting system vendor will insert some extra code in the system. While the open-ended evaluation team should look for this sort of thing, this isn’t the focus of the evaluation, and it is likely to be quite hard for the evaluation team to detect it. Criminal penalties are unlikely to do much to prevent this, since the attacker will already know he is committing a crime. Similarly, incentives for the vendor not to deceive the evaluation team aren’t too useful, since the attacker is also deceiving the vendor. Good version control procedures and internal computer and network security within the vendor’s development environment can make this much harder, but it isn’t clear how much of this should be made into testable requirements. (Testing the vendor’s development environment for security is outside the scope of OEVT.)

3.3.1.4. Other Issues

Other minor policy issues involve:

· Whether there is any information the vendor can intentionally withhold from the evaluation team.

· How to deal with minor changes to the system over time, such as new versions of COTS components.

3.3.2. Rules of Engagement

Rules of engagement determine what will and won’t be tested, and what limits the evaluators will accept on their own power. For example:

· Evaluating the tamper-resistance of a voting machine will have some limits on the amount of time given to the attacker.

· Insider attacks must be considered in the open-ended evaluation. However, where there are different roles enforced by the voting system or different machines involved, it makes sense to limit how many different entities the attacker is allowed to control.

· Certain procedural defenses may be specific to the voting system, and may need to be assumed for the voting system to be secure. The rules of engagement would specify those defenses as an assumption, if the evaluators believed the assumption made sense.

 Most of the rules of engagement should be determined by the standard. All the rules of engagement must be included in the final public report, so that anyone that buys or relies on the security of the voting system can determine whether those assumed procedures are being followed or not.

Sensible parameters for the rules of engagement will have to be determined; this is a major technical issue.

3.3.3. Feedback to the Vendor: The Confidential Evaluation Report

The result of the evaluation will be a confidential evaluation report, which will specify either that the system passed (possibly with outstanding minor issues that need to be resolved) or that it failed.

When a voting system fails, the VSTL should specify what would need to be fixed in order for it to pass. The VSTL may specify some suggestions about how to fix the problems, but it’s important that the evaluators don’t get too involved in designing fixes, because they will presumably be re-evaluating the system after the fixes are applied.

3.3.3.1. Re-evaluation procedure

The main general policy issue here is what process a voting system with a failed evaluation will go through to get fixed. In particular, we assume there will be some standard procedure for fixing and resubmitting a voting system to the VSTL. We need to determine some details of this, including:

· Will the reevaluation simply verify the fixes and retest those part, or will there be additional evaluation?

· What disqualifies a voting system for going through the reevaluation process? That is, are there systems so flawed that they just need to be redesigned and evaluated again from scratch?

· What limits are there on changes that may be made to address the fixes? It’s clear that if the voting system is radically changed, a new evaluation needs to be done. But what are the limits on peripheral changes before resubmission?

3.3.3.2. Stopping and Starting the Evaluation

These evaluations are likely to be expensive. A second policy issue is whether there’s a point where the VSTL should stop the evaluation, and wait for some major problem to be corrected before continuing. The most likely ways for this to happen would be :

· If some very fundamental problem were found with the system design, it might be wiser to simply stop the evaluation until that problem was fixed.

· If some very easily fixed problems were found (such as many out-of-date and known-flawed versions of COTS software), it might make sense to let the vendor fix these, and then continue the evaluation.

· If the security documentation is fundamentally flawed (in the sense that the security arguments given don’t stand up), then it may make sense to stop the evaluation until those problems are resolved.

3.4. Deciding Pass/Fail

The decision of whether a voting system passes or fails evaluation is a core part of making the evaluation meaningful—if the evaluation team discovers major problems, but the system still passes, the open-ended evaluation was probably a waste of money.

The policy decisions here resolve around three questions:

· How should the final result of pass or fail be resolved?

· Should there be an appeals process for disputed evaluations?

· Are there ever cases where a passed evaluation should be revoked?

3.4.1. How is Pass/Fail Decided?

We expect that the results of evaluations will fall into three categories:

· Clearly passing voting systems

· Clearly failing voting systems

· Voting systems whose result is subject to some debate

Our current notion is that if any of the intermediate attack goals are successfully reached, the system should fail evaluation unambiguously. The evaluation team may wish to fail the system over bad arguments in the security documentation or bad procedures, but this is likely to be less clear cut.

A related policy decision involves whether the evaluation team or some other body, perhaps appointed by the EAC, decide whether to pass or fail a voting system. The main advantage of having the evaluation team or VSTL make the decision is that they are closest to the facts, having actually evaluated the voting system. The advantage of an outside body making the decision is that this body would be further away from any business relationship between the VSTL and vendor. However, it’s not clear how much this would change the result of the evaluation, since the outside body would be basing their decision entirely on what the VSTL reported.

3.4.2. Appealing a Decision

Sometimes, the vendor is likely to disagree with the evaluator’s decision. More commonly, there may be some ambiguity in the standard that requires an external decision about whether something is or is not ground for failure.

The best answer we can see for this is some process to appeal decisions to a body appointed to the EAC.

Also, some body appointed by the EAC needs to keep track of precedent in decisions about how to interpret the standard, so that the same rules are applied consistently. Something like this is done in common criteria evaluations, and the interpretations are eventually used to modify the standard.

3.5. Public Disclosure: The Final Public Report

The final public report will be provided to purchases and prospective purchasers of the voting system, and should be available to the public. The goal of the public report is to tell people who rely on this voting system what kind of evaluation was done on it, and most importantly, to list exactly what assumptions were made in analyzing its security.

The interesting technical and policy issues here involve three questions:

· Should the report be fully public, or should it be restricted to only election officials considering buying the system?

· What information should be included in the final public report?

· How should we resolve disputes about the contents of the final report?

3.5.1. Fully Public?

There are two reasons to make the report public:

· The report will specify the conditions under which the system was evaluated. Making these public will allow the public to convince themselves that the voting system is being used in a way that’s consistent with the evaluation and the security analysis.

· All the details in this report must be made available to election officials considering purchasing the voting system. This means that it already cannot include information that would undermine the voting system’s security. (If the evaluation discovered information that would allow a practical attack on the voting system, the system should not have passed evaluation.)

3.5.2. Included Information

What information should be included in this final report? We think the most important elements include:

· The security documentation from the election official, specifying procedures and a security argument that was checked during evaluation of the system.

· The rules of engagement, specifying what limitations were assumed on the attacker.

· A list of specific security controls or intermediate attack goals checked, along with at least a brief summary of how they were checked. For example, the report might include many entries along the lines of the following:

Intermediate Attack Goal: Tamper with electronic records in transit

Security Control: TLS cryptographic protocol between voting machine and tabulation center server

Evaluation:

· We verified use of FIPS-approved TLS implementation in software, restricted to only FIPS algorithms, by inspection.

· We intercepted the encrypted communications and verified that they were in cipher text, and that tampering with them caused the communications to shut down and indicate an error.

· A list of concerns that haven’t been resolved, but which didn’t cause the system to fail evaluation.

· The dates when the evaluation was started and completed.

The first two of these are critical for both buyers and people trusting the results of the voting system to see. Since it’s not possible to evaluate a voting system without knowing something about the procedures that will surround it, specifying the procedures that were assumed is of great value. Further, knowing what assumptions were made during analysis allows any member of the public to convince himself that the voting system is now being used in a way consistent with those assumptions.

The rules of engagement also allow members of the public to evaluate how comprehensive the evaluation really was. An evaluation that assumed no insiders were corrupt, even the volunteer poll workers who showed up on Election Day, would inspire less confidence than one which allowed the evaluators to try to attack the system while playing various partially-trusted roles within that system. This might also allow a way to slowly phase in use of these evaluations—early evaluations might have less demanding rules of engagement. Or the different kinds of rules of engagement might be used to certify voting systems to different levels of security, much as FIPS-140 module validation is done at different levels of security.

The list of security controls or attack goals considered lets members of the public, and the potential buyer of the voting system, understand how this system was evaluated. A long list of examined attack goals inspires some confidence, though it’s not possible to determine how talented or diligent the evaluation team was.

The list of issues may be useful for someone considering buying the system. For example, if the evaluators point out that the procedures are possible to use, but cumbersome and difficult to do correctly, this might be very valuable to a prospective buyer.

The dates for the evaluation simply allow a potential buyer to verify that the testing has been done recently. Some form of renewal of the evaluation would make sense, with evaluators going back and at least checking for known-weak versions of COTS software and applying other more up-to-date vulnerability scanning tools.

3.5.3. Disputes

It’s possible that the vendor will dispute some of the contents of the report, though this seems like a minor concern. It probably makes sense to have the same set of dispute resolution procedures available for this as for the pass/fail decision.

4. Open Technical Issues

4.1. Overview

The most important technical issues revolve around the novelty of this proposed evaluation scheme. While there are many cases of this kind of evaluation being done informally, we don’t have a good example of a functioning, real-world testing regime that works this way on a large scale. This inclines us toward a desire to focus our testing on concrete intermediate attack goals, and also toward a desire to use open-ended evaluation as an addition to the more traditional testing, rather than as the main device for testing the security of a voting system.

4.2. Is This the Right Approach to Open-Ended Testing?

The approach we have described above is new; while it is derived from existing systems, we cannot point to similar programs for operational experience. This raises some real concerns that the general approach of using open-ended evaluation as a major part of evaluating a voting system may be very difficult to carry out. Specifically, we might ask two questions:

· Will evaluating these systems in the way we’re describing simply be too hard for the VSTLs? That is, will the budget we can expect for this kind of evaluation support so little time and money for finding vulnerabilities that only the most obvious of vulnerabilities is ever discovered?

· Will designing a voting system to resist attack even at the limited level possible prove too difficult or expensive for voting system vendors? (This ultimately would result in high prices for voting systems, as purchased by counties and states.)

4.2.1. Starting Slowly

The best way we can see to get open-ended testing working in a meaningful way is to start slowly: To start by making most of the focus of VSTL testing the checklist-style testing with which we have extensive operational experience. Open-ended evaluation should be focused on the parts of the system which can’t be tested in other ways, and should start up by focusing mainly on kinds of open-ended testing that can be automated, and that are already capable of being done by the VSTLs.

At first, we should emphasize the parts of the open-ended analysis which cover parts of the voting system which are least susceptible to being checked using more traditional testing approaches. In particular:

· Reviewing and evaluating the security documentation from the vendor will both force the vendor to think through how that document may be written, and give the evaluator a chance to see whether there are questionable assumptions being made.

· Evaluating the procedures specified by the vendor is extremely important. Both the plausibility of these procedures and their effectiveness in accomplishing some security goal are very valuable.

· In conjunction with the above two steps, some level of analysis of whether there are basic design flaws in the voting system can be done.

· Direct physical inspection of the voting machine for exposed ports or related problems requires no special expertise, and can at least catch gross design flaws.

We should similarly focus our initial open-ended testing efforts on the use of tools to search for possible vulnerabilities, as this is clearly possible, and doesn’t require enormous expertise or resources to do well. This includes:

· Automated scans of the source code for common patterns of software vulnerability.

· Root kit detection tools to verify that nothing is hidden in the installation.

· Scans of COTS software versions within the installation for known-weak mechanisms.

· Vulnerability scanning of any machines which connect to a network.

Finally, we should list the intermediate attack goals from the standard, even if the open-ended evaluation team will not always have the budget or expertise to try to reach most of them. Even if the evaluators have time only to check the two or three of these which seem most likely to yield an attack, this will ensure that at least obvious vulnerabilities are ultimately closed, and that voting system vendors have a strong incentive to look for such vulnerabilities themselves as carefully as possible, to avoid delay and extra expense that would be caused by failing their evaluation.

4.2.2. Not Setting the Bar Too High

The rules of engagement determine the starting assumptions for the evaluation team. This includes what kind of access the evaluators are allowed in evaluating different parts of the system. For example, when attempting to attack a voting machine over a network, is the evaluator allowed to communicate with the voting machine from another trusted machine, such as another voting machine in the same polling place or the server at the tabulation center? The choice of rules of engagement can be used to avoid setting the bar for passing so high that no real-world system can survive it. However, we urge caution in doing this, because it would be easy to specify rules of engagement so restrictive that the result of the evaluation was meaningless.

4.3. How can intermediate attack goals be decided?

Intermediate attack goals are a major part of our approach to open-ended evaluation. An important technical question is how we should determine these goals. There appear to be two strategies:

· Specify a small set of high level attack goals, which demonstrate components of attacks on voting systems, e.g., from the NIST “Threats to Voting” workshop. The evaluation team should then spend significant time and effort on each.

· Example Goal: Acting in any role that is not authorized to install new software on the voting system, install any new piece of software on the voting system.

· Specify a large set of attack goals, most of which test the effectiveness of some specific security control. In this case, the evaluation only examines the attack goals that look the most likely to be vulnerable.

· Example Goal: Bypass the patch signing mechanism without knowledge of the signing key, and without tampering with software on the voting machine in order to get the attack to work.

Note that the first example goal is high-level, and relates to a high-level security requirement (don’t let the attacker install programs on your voting machine). The second example is much more narrowly focused at a security control (defeating code signing).

We are inclined toward the first strategy, because this allows a lot of flexibility for the team. However, this also makes the evaluation less consistently repeatable, since different evaluators will try to accomplish these goals in different ways.

4.4. How can we ensure that the open-ended evaluations are done properly?

These evaluations, even if somewhat limited in scope, will be consuming a lot of time and money. We need to work out how to ensure that they’re being done competently. This resolves into three questions:

· How can the EAC or whatever organization certifies VSTLs ensure that the VSTLs are capable of doing this kind of evaluation?

· How can the EAC verify that the evaluations are really being done in a serious, meaningful way?

· How can the public verify that the evaluations are being done in a serious and meaningful way?

4.4.1. Certifying VSTLs for Open-Ended Evaluation

How can the EAC verify that the VSTL has the resources to do this? We’re not sure yet—this is a hard problem. Some list of qualifications and tools used can help, but this is still an open issue.

Perhaps the best answer comes from competence testing of VSTLs for open-ended testing. Further work will be needed to see if this is sufficient.

4.4.2. Verifying Reports

Another major question is how the EAC can review reports to make sure the analysis is being competently done. This is a broad general problem in testing schemes, and maybe some people in NAVLAP will have some insights. Open-ended testing results are harder to check for correctness than other kinds of testing results.

5. Conclusions

In this white paper, we have discussed the need for some level of open-ended evaluation of voting system security, and outlined an approach for doing that evaluation. We have also raised a number of policy and technical issues that need to be addressed over the next few years, in order to begin carrying out meaningful open-ended evaluation as a component of the larger voting-system testing regime. Some of these issues can be resolved only after we have gained some operational experience doing open-ended evaluation on voting systems.

6. Acknowledgements

The author would like to thank Alicia Clay, Barbara Guttman, Nelson Hastings, Rick Kuhn, Ron Rivest, Adam Shostack, and Murugiah Souppaya for useful discussions about issues surrounding open-ended testing of voting systems.

7. References

· NIST SP 800-53 revision 1, “Recommended Security Controls for Federal Information Systems, Draft March 2006” , available at http://csrc.nist.gov

· RABA Trusted Agent Report, available at http://www.raba.com/press/TA_Report_AccuVote.pdf
· SAIC “Risk Assessment Report, Diebold Accuvote–TS Voting System and Processes,” September 2003, available at http://www.dbm.maryland.gov

· Kohno, Stubblefield, Rubin, Wallach, “Analysis of an Electronic Voting System,” IEEE Symposium on Security and Privacy 2004, available at http:// avirubin.com/vote.pdf

· “Preliminary Analysis of Threats to Voting Systems,” John Kelsey, NIST, March 2005, available at http://vote.nist.gov
· “Voting System Testing and Evaluation Addressing Resolution 17-05,” John Kelsey, NIST, March 2005, available at http://vote.nist.gov
� Security controls are defined in NIST SP800-53 as the management, operational, and technical safeguards or countermeasures prescribed for an information system to protect the confidentiality, integrity, and availability of the system and its information.

� More research on technical issues will be needed in order to produce a complete list of properties and resources specified in the rules of engagement, and this list will likely evolve as labs and the EAC gain operational experience with OEVT.

PAGE
20

