DRAFT Formal Specification of the Colorado
Risk Limiting Audit (CORLA) Tool

Joseph R. Kiniry and Daniel M. Zimmerman
with input from
Neal McBurnett, Stephanie Singer, and Joey Dodds

July 2017

1 Introduction

The RLA Tool is a computer system developed by Free & Fair for the Colorado
Department of State (CDOS henceforth). The RLA Tool facilitates running a
risk limiting audit across several jurisdictions. In the case of Colorado, it facili-
tates running risk limiting audits across all counties in the state simultaneously.

1.1 Colorado Statues and Rules

The Colorado election law pertaining to election audits is Section 1-7-515,
C.R.S., where “C.R.S.” denotes “Colorado Revised Statutes”.

The rules pertaining to election audits are found in Code of Colorado Reg-
ulations, Secretary of State, State of Colorado, Department of State Elections
Rules 8 CCR 1505-1. We will call that document Rules 1505-1 for the purpose
of traceability in this specification.

The contract for this system was solicited while these rules were still under
development. The final rules were adopted during week seven of the project.
The initial version of these specifications was written against “Revised Draft of
Proposed Rules” (CCR 1505-1) dated July 6, 2017. We will call that document
RDPR-6-Jul-2017 for the purpose of traceability in this specification.

Section 25, Post-Election Audit, of these documents is the salient portion of
the rules for our purposes.

This domain model is based upon that law, its rules, the procurement con-
tract between CDOS and Free & Fair, our bibliography of publications about
risk-limiting audits, etc.

The core of this document is a formal specification of the RLA tool. The
specification documents our thinking and the system design, from domain mod-
eling and engineering all of the way to formal specification and verification. In

http://law.justia.com/codes/colorado/2016/title-1/general-primary-recall-and-congressional-vacancy-elections/article-7/part-5/section-1-7-515/
http://law.justia.com/codes/colorado/2016/title-1/general-primary-recall-and-congressional-vacancy-elections/article-7/part-5/section-1-7-515/
http://www.sos.state.co.us/CCR/GenerateRulePdf.do?ruleVersionId=7121&fileName=8%20CCR%201505-1

keeping with the spirit of open source development, the publication of this spec-
ification should support any interested parties with the requisite technological
skills to deploy, manage maintain or evolve the system.

This document is annotated to help readers who are not expert in formal
system specification understand the scope and interpretations of the elements
of the specification. The prose annotations will help elections domain experts
assess the completeness and correctness of the RLA tool built for Colorado.

1.2 Technical Context

The RLA Tool is a client-server system. The server is implemented in Java
and runs on servers hosted by CDOS. The client is implemented in TypeScript
and JavaScript and runs in modern web browsers. CDOS provides the hosting
servers, network, and a number of services in support of the tools deployment
and management.

This document is written in the literate style promoted by Donald Knuth),
using the PVS theorem prover. Writing system specifications in this fashion is
called (formal) domain engineering. It allows the production of typeset books
and interactive hypertext directly from the specification. In order to write
literate PVS we use our old friend Adriaan de Groot’s scripts, available at
http://www.cs.kun.nl/~adridg/research/PVS-literate.html. The formal
domain model is written in PVS’s higher-order logic (HOL). There is a corre-
sponding informal domain model written in the Free & Fair System Specification
Language, or FAFSSL for short. FAFSSL is a daughter of Extended BON which
was, in turn, a daughter of http://www.bon-method.com/| the Business Object
Notation.

In order to relate PVS to FAFSSL, we must define a refinement relationship
between their two type systems. Informally, that mapping is described in the
following paragraph.

We map PVS public theories and their contents to FAFSSL constructs. The
top-level corla theory maps to the FAFSSL system specification, theories map to
clusters, (PVS) types map to (FAFSSL) types, and functions map to features.

The formal domain model is annotated with structured comments in precise
natural language using a standard set of annotations. A shell script processes
these annotations and generates a well-typed informal FAFSSL specification.
See our Bibliography project at GitHub, https://github.com/FreeAndFair/
Bibliography, for more information.

2 Formal Model Description

2.1 Basic Technical Infrastructure

It is necessary to summarize a number of background concepts from computer
science in order to formalize the RLA Tool. The Free & Fair System Specifica-
tion Language (FAFSSL) annotations we use are as follows:

https://en.wikipedia.org/wiki/Literate_programming
https://en.wikipedia.org/wiki/Donald_Knuth
http://www.cs.kun.nl/~adridg/research/PVS-literate.html
https://github.com/FreeAndFair/Bibliography
https://github.com/FreeAndFair/Bibliography

system the FAFSSL name of the system

cluster the FAFSSL name of a cluster

description a short description of an artifact

explanation the (potentially longer) explanation for an artifact

indexing-CLAUSE a prefix for any indexing <CLAUSE>
These suffixes are commonly used for indexing;:

author an author of an artifact

organization an organization responsible for an artifact

keywords a comma-separated list of keywords

created the creation date for an artifact

github the URL for the GitHub project containing an artifact

2.2 Kinds of Concepts

Three kinds of concepts, each of which is a part of speech, are introduced in any

specification:

e Nouns are formalized by regular (composite) types. The set of types

available in the prelude of PVS is large, ranging from booleans to real-
world concepts like time and tokenizing leers. Composite types are product
types such as tuples and records.

Verbs are formalized by function types. PVS’s HOL supports higher
order dependent type declarations, including higher order function types.
Thus, even the most complex verb forms can be formalized in the model.

Adjectives and adverbs are formalized by defining function types that
apply to formalizations of nouns and verbs, respectively. Often these types
are either predicate types (i.e., something is true or not), metric types en-
coded in enumerations or ordered structures such as numbers (i.e., how
heavy something is), or are enumeration types (i.e., what properties some-
thing has, but with no particular ordering, such as the color of something).

Consequently, when we formalize a concept from some background informal

information, we identify all domain specific nouns, verbs, adjectives, and adverbs
in that source material and capture the meaning of each and every idea relevant
to the system we are defining. This identification and formalization process is
iterative, with the precision of the formalization generally increasing as we refine
the model of the system and being defining its implementation.

2.3 Refinement from Background Literature to Specifica-
tion

The Colorado statutes (i.e., the law) pertaining to election audits is [Section
1-7-515, of the C.R.S.. The rules (i.e., the interpretation of the statutes and
an explanation for how to realize their goals) pertaining to such are found in
the aforementioned Rules 1505-1. Section 25, Post-Election Audit, of that doc-
ument is the salient portion of that document. We will call the draft version
of that document against which we originally wrote this specification RDPR-6-
Jul-2017, and the final version Rules 1505-1, for the purpose of traceability in
this specification.

This domain model is based upon these statutes, their associated rules, our
contract with CDOS for the RLA Tool or requirements stipulated in refinement
of the contract through written exchanges with CDOS, and our bibliography
of publications about risk-limiting audits and digital elections. Every concept
introduced herein comes from one of those sources. That full collection of re-
sources is known as the background literature for the system.

In general, if a concept is defined, its relationship to those non-technical ar-
tifacts (statue, rules, contract, etc.) is captured using a traceability annotation
of the form

Otrace <SOURCE ARTIFACT> Discussion of traceability relationship.

Such annotations exist directly in the source text of this document (the
file corla.pvs in the spec/pvs folder of the ColoradoRLA GitHub project.
They also will be included as margin comments with hyperlinks to the relevant
target for refinement. If we are refining from requirements stated in statute
or rules, then we link to those higher-level documents. If we are refining to
implementation artifacts, then we link directly to those lower level artifacts as
they exist in our source code repository.

If a concept is introduced and it has no explicitly annotated traceability
relation, then the reason for its introduce should be spelled out in the discussion
of that concept in the same section.

As discussed above, the set of all concepts defined and relevant to the system
is the systems’s domain model. The short definition of each and every concept
is part of what constitutes the glossary of this system. There may be other
terms in the glossary introduced because they relate to, or are mentioned in,
the background literature but need not be formalized to specify the RLA Tool’s
behavior.

Currently, our glossary is a hand-written Appendix in the RLA Tool Book,
found in the docs directory of the project repository. Before the final system
delivery, that book will be integrated with this formal specification and the
glossary concepts that come from this formal specification will be automatically
generated out of this specification. By integrating the artifacts in this fashion
we more easily guarantee precision, correctness, completeness, and traceability
of our specification, both formal and informal.

http://law.justia.com/codes/colorado/2016/title-1/general-primary-recall-and-congressional-vacancy-elections/article-7/part-5/section-1-7-515/
http://law.justia.com/codes/colorado/2016/title-1/general-primary-recall-and-congressional-vacancy-elections/article-7/part-5/section-1-7-515/
https://github.com/FreeAndFair/ColoradoRLA/

Another goal we have is making sure that our formal model is consistent with
federal standards. In particular, the work of the NIST/EAC Interoperability
Working group, Election Modeling subgroup, will likely be be useful. In that
work there is a BPMN2 model, pictures, XPDL, XML, and more at the NIST
Election Modeling GitHub page, and the NIST main Election Modeling wiki.
UML for some relevant concepts is also available via GitHub. We do not have
time or resources for ensuring consistency between models n0WE|

2.4 Refinement from Specification to Implementation

In order to turn a specification like this one into an implementation we must
take the following steps.

1. We must decide how each type is going to be concretized into the im-
plementation the system. Generally, modules in the formalization refine
into comparable modules in the implementation. For example, a cluster of
ideas that must be persisted and all relate to each other often turn into a
database table or an object graph. Simpler concepts often map directly to
built-in primitive and library types. Function types, unsurprisingly, turn
into procedures, functions, or methods.

2. We must ensure that all properties about types mandated by the speci-
fication are realized in the implementation. We use axiomatic definitions
to encode types and their constraints, usually via dependent types and
sometimes via literal axioms in the formal specification.

A simple example will provide an example of both of these steps. The
concept of risk limit is that it is a percentage. Thus, it is a number
between 0 and 100. It is a modeling decision how to represent such, but
given the client has not mandated that risk limits must not be fractional
percentages, such as 1.25choose to use a real number to formalize the idea
of risk limits. Thus, we encode the concept of risk limit as the type

risk_limit: TYPE = n : nonneg_real | n <= 100

which means “the concept of risk limit is equivalent to the set of all non-
negative real numbers whose value is no greater than 100”.

3. We must ensure that all properties about the system and its components
are realized by the system. System properties are specified using theorems.

Each theorem is refined in the system to assurance artifacts. One form of
assurance is testing. Runtime verification—in the form of runtime asser-
tion checking, automatically generated tests, or hand-written tests—can
check sets of cases of each theorem. Formal verification—in the form of

IWhat consistent usually means in this context is that there is a relation we can define
between types in the models that is information preserving from the simpler model to the
more complex one.

https://github.com/usnistgov/ElectionModeling
https://github.com/usnistgov/ElectionModeling
http://collaborate.nist.gov/voting/bin/view/Voting/ElectionModeling
https://github.com/usnistgov/CastVoteRecords

automatic static analysis or interactive theorem proving—can check prop-
erties wholesale in the system, ensuring that properties hold for all possible
inputs in all possible environments.

Given the short period of performance for this first version of the CORLA
system, we are formally annotating some of the code with JML. Doing
so helps us trace and think carefully about refinement from our formal
specification to our implemenation. It will also permit us, after this initial
burst of work is complete, automatically generate a test bench using JM-
LunitNG| and automatically reason about the implementation using the
OpenJML tools suitel

Add annotation functions
coupled to milestones.

FAFSSL: THEORY .
-kiniry

BEGIN

TBD: boolean = TRUE
TBD_TYPE: TYPE
END FAFSSL

All of the data relevant to the audit is stored in a database. Databases con-
tain tables that describe the information they contain. We need not formalize
database elements in any more detail than what follows.

database: THEORY

BEGIN
database_table: TYPE
data: TYPE

database: TYPE = setof [database_table]
write: [database, database_table, data —> database]
read: [database, database_table -> data]

END database

We also need to be able to talk about some ideas from information systems. For
example, many files in election systems are syntactically just lists of comma-
separated values. Email is used for communication between officials and with the
public. Files are used to store information in a persistent fashion. Consequently,
we introduce a few types for these ideas.

information_systems: THEORY
BEGIN
comma_separated_value: TYPE
csv: TYPE = comma_separated_value
email: TYPE
email_address: TYPE
file: TYPE

http://insttech.secretninjaformalmethods.org/software/jmlunitng/
http://insttech.secretninjaformalmethods.org/software/jmlunitng/
http://www.openjml.org/

network: TYPE

web_browser: TYPE

browser: TYPE = web_browser

javascript_code: TYPE

date_and_time: TYPE = string
END information_systems

Several kinds of servers are necessary to deploy this system. At the minimum,
two of each of a web server, a time (NTP) server, a firewall, and a database
server are necessary. Two servers of each class are required for redundancy to
fulfill availability requirements. Preferably redundant servers would be hosted in
separate facilities, with separate and independent power systems and networks.

An Election Night Reporting (ENR) server is mentioned repeatedly in the
RDPR-6-Jul-2017, so we model it here.

The next few lines of the specification encode the process of establishing the
necessary servers.

server: DATATYPE
WITH SUBTYPES web_server,
application_server,
time_server,
firewall,
database_server,
enr_server
BEGIN
IMPORTING database,
elections,
information_systems

web_server?: make_web_server: web_server
application_server?: make_application_server: application_server
time_server?: make_time_server: time_server
firewall?: make_filewall: firewall
database_server?(databases: set[database]):
make_database_server: database_server
enr_server?: make_enr_server: enr_server
END server

2.5 Elections

A number of general elections concepts are necessary to specify the RLA Tool.
Some are generic to all elections, and others are specific to Colorado.

elections: THEORY
BEGIN

Voters make the choices that determine the outcome of legitimate elections.
Voters have first and lastnames and a political party affiliation.

person: TYPE =
[# firstname: string, lastname: string #]
political_party: TYPE = string
voter: TYPE =)FROM person
[# firstname: string,
lastname: string,
party_affiliation: political_party #]
elector: TYPE = voter

Some voters are UOCAVA voters. What follows is one way to formalize such,
simply stating that the type uocava_voter is a predicate on the type voter.
Consequently, all voters are either UOCAVA or not.

uocava_voter: pred[voter]

Candidates run for office to represent voters. A person can be a voter, a candi-
date, both, or neither.

candidate: TYPE FROM person

option: TYPE =
[# name: string, description: string #]
choice: TYPE = set[option]

Elections focus on contests, each of which represents a choice that voters can
make. Making a legal choice ranges enormously across the Earth, from marking
a vote for a candidate by filling in a single bubble to enumerating a total order
on all choices in a contest. Within any single election, each contest has a unique
name.

contest: TYPE =
[# name: string,
description: string,
choices: choice,
votes_allowed: nat #]

audited_contest: TYPE FROM contest
opportunistic_contest: TYPE FROM contest
full_hand_count_contest: TYPE FROM contest

Need to break the cycle
between the contest type
and the ballots theory.
sfsinger suggests: con-
tests are grouped into
elections, not ballots. So
define contests first. Then
a ballot is created to rep-
resent a set of contests.
-kiniry

After a tabulation, each contest has an outcome. For some contests, the outcome |Add an axiom for contest)
is the candidate who won; for others the outcome is a set of candidates (say, in | name uniqueness. -kiniry

a contest for five at-large seats where the top five vote-getters win); for ballot h
questions the outcome is either “yes” or “no”. The set of outcomes from all These types will be re-

contests in a single election are the outcome of the election. fined when we review the
information provided by
contest_outcome: TYPE CDOS on 20 July 2017
election_outcomes: TYPE = set[contest_outcome] about Dominion’s file for-
wrong_outcome: TYPE FROM election_outcomes mats. -kiniry

Tabulation results are calculated from the CVRs by the RLA tool. These out-
comes and margins are used to drive the RLA algorithms. These outcomes
should be checked against the reported_tabulation_outcome, and should match
since they were generated at the same time.

cvr_tabulation_outcome: TYPE FROM election_outcomes

Revise this definition. -
kiniry

reported_tabulation_outcome: TYPE FROM election_outcomes

rla_tabulation_outcome: TYPE FROM election_outcomes

Elections are defined across cohorts of voters paritioned in any number of ways—
geographic, political, professional, and more. In Colorado, elections are orga-
nized across counties and the entire state.

county_id: TYPE = nat
county_name: TYPE = string
county: TYPE =
[# name: county_name, id: county_id #]
county_status: TYPE =
{ no_data, cvrs_uploaded_successfully, error_in_uploaded_data }
state: TYPE = set[county]
nation: TYPE = set[state]
organization: TYPE

Each county has a name and a county number, both of which are unique across
the state.

s: VAR state
cl, c2: VAR county

county_names_unique: AXIOM
(FORALL s, cl, c2:

member(cl, s) AND member(c2, s) AND
cl‘name = c2‘name
IMPLIES cl = c2)
county_numbers_unique: AXIOM
(FORALL s, cl, c2:
member(cl, s) AND member(c2, s) AND
clid = c2¢id
IMPLIES cl = c2)

election_canvass: TYPE

audit_center: TYPE

ballot: TYPE % = [election, set[contest], ballot_id]
END elections

Elections come in many forms: public and private elections; national and local
elections; etc. This RLA Tool focuses on state elections in Colorado, which we
model as a set of county elections.

Note that county elections are actually multi-county elections, where the
typical case is that the set of counties is a singleton. In other words, in the
general case, contests are multi-county contests, which can have the same contest
name in multiple counties, and county elections gather votes for contests from
a single county.

election: DATATYPE

WITH SUBTYPES county_election
BEGIN

IMPORTING elections

is_county_election?(name: string,
date: string,
counties: set[county],
contests: set[contest]):
make_county_election: county_election
END election

2.6 Ballots

The second basic concept of elections that we need to specify is the ballot. A
ballot is a (possibly flawed) representation of the choices made by a voter in all
contests in the election. A ballot may be paper, or it may be electronic — for
example in Colorado UOCAVA voters can return their voted ballots by email.
In Colorado these electronic ballots are printed out, producing paper ballots.

10

In some situations, say, if a voter has marked a paper ballot with ink of a color
that the scanners cannot read, Election Board workers will create a duplicate
ballot from the voter’s original. .

There are a variety of ways to store ballots. Some ballot storage containers
are secure, others are not. Some facilitate an easy means by which to find a
particular ballots, others do not. An important part of any election process is
the creation of the storage containers for the ballots. We distinguish different
types of containers because (a) we have witnessed different storage mechanisms
in the field, (b) we understand there is not a uniform storage mechanism in
Colorado, and (c) some mechanisms are secure and provide a chain-of-custody
evidence and others are not. This latter point matters with regards to the
meaning of chain_of_custody_secure? and verified? below.

storage_container: DATATYPE
WITH SUBTYPES box,
bin,
ballot_box
BEGIN
IMPORTING elections

box?(ballots:list[ballot]): make_box: box

bin?(ballots:1list[ballot]): make_bin: bin

ballot_box?(ballots:list[ballot]): make_ballot_box: ballot_box
END storage_container

Another crucial element of an election is the vote-counting equipment.

elections_equipment: THEORY
BEGIN
IMPORTING storage_container

voting_system: TYPE
dominion_voting_system: TYPE FROM voting_system

scanner_id: TYPE = string
scanner: TYPE =
[# name: string, model: string, id: scanner_id #]

vvpat: TYPE
verified?: TYPE = pred[storage_container]
chain_of_custody_secure?: TYPE = pred[storage_container]

Voting system’s logs are precisely defined in federal standards. Those standards
are known as the “Voluntary Voting System Guidlines”, or VVSG for short.

11

Add an axiom for unique-
ness of scanner id num-
bers. -kiniry

END elections_equipment

ballots: THEORY
BEGIN
IMPORTING elections,
elections_equipment,
storage_container

Several of our concepts are simply whole numbers (denoted “nat”, for natu-
ral numbers, in the specification). For example, ballot identifiers (ids), batch
numbers, and batch sizes are all just natural numbers, 0, 1, 2, etc.

ballot_id: TYPE = nat
batch_id: TYPE = string
batch_size: TYPE = nat

Ballots are marked by voters or ballot marking devices. A ballot mark is
any kind of mark made on a ballot that is not found on a blank ballot. A
voter_marking is any mark made by a voter. An ambiguous mark is a mark for
which there is ambiguity in its interpretation (voter or machine). A stray mark
is a mark that is outside of the legitimate regions of a ballot, such as hesitation
marks outside of the mark regions for a contest or marks made by coffee spilled
on a paper ballot.

ballot_mark: TYPE

voter_marking: TYPE FROM ballot_mark
ambiguous_mark: TYPE FROM ballot_mark
stray_mark: TYPE FROM ballot_mark

Ballots come in several varieties. All ballots are represented in a digital fashion
(a scan, PDF, etc.), or are paper ballots, or both. Ballots are also classified
based upon where they originate, such as delivery via mail, UOCAVA ballots,
early ballots, etc. Ballots are also either tabulated or not. Note that not all of
these categories of ballots are mutually exclusive.

digital_ballot: TYPE FROM ballot
paper_ballot: TYPE FROM ballot
mail_ballot: TYPE FROM ballot
uocava_ballot: TYPE FROM ballot
early_ballot: TYPE FROM ballot
tabulated_ballot: TYPE FROM ballot
provisional_ballot: TYPE FROM ballot
property_owner_ballot: TYPE FROM ballot
original_ballot: TYPE FROM ballot
duplicated_ballot: TYPE FROM ballot

12

non_voter_verifiable_ballot: TYPE FROM ballot
voter_verifiable_ballot: TYPE FROM ballot
phantom_ballot: TYPE FROM ballot

Ballots can be in various stages of processing, as implicitly mentioned in the

C.R.S.

verified_accepted?: pred[mail_ballot]

Each ballot has a single ballot style, which indicates (at least) the contests that
are listed on that ballot. Ballot styles are usually encoded as natural numbers.

ballot_style: TYPE = nat
ballot_style?: [ballot -> ballot_stylel

Need to clarify choices vs
options vs votes. -kiniry

ballot_contest: TYPE = contest

Need to add model infor-
mation for write-in votes.

e
Ballots are often grouped into batches. iy

batch: TYPE = set[ballot]

The county must secure and maintain in sealed ballot containers all tabulated
ballots in the batches and order they are scanned. The county must maintain
and document uninterrupted chain-of-custody for each ballot storage container.
Sometimes ballots are processed, either manually or by machines, in such a
way that an imprint is made on each ballot processed. By hand, a stamp and
signature is sometimes used, e.g. Another example is that a scanner might
automatically print a new ballot identifer on the corner of each ballot scanned.
We call such a ballot an imprinted ballot.

imprinted_ballot: TYPE FROM ballot
ballot_certification: TYPE

number_elected: TYPE = posnat
votes_allowed: TYPE = posnat

END ballots

13

2.7 Ballot Manifests

While tabulating ballots, the county must maintain an accurate ballot manifest
in a form approved by the Secretary of State. At a minimum, the ballot manifest
must uniquely identify for each tabulated ballot the scanner on which the ballot
is scanned, the ballot batch of which the ballot is a part, the number of ballots
in the batch, and the storage container in which the ballot batch is stored
after tabulation. In the RLA Tool, a ballot manifest uploaded by a county
must eventually be verified, using the cryptographic hash (described in a future
section).

ballot_manifests: THEORY
BEGIN
IMPORTING ballots,
elections_equipment,

information_systems

ballot_manifest_info: TYPE =
[county_id,

scanner_id,

batch_id,

batch_size,

storage_container]

ballot_manifest: TYPE = list[ballot_manifest_info]

verified?: pred[ballot_manifest]

ballot_manifest_file: TYPE FROM file

export_ballot_manifest: [voting_system -> ballot_manifest_filel

END ballot_manifests

The interpretation of the meaning of a voter’s choice in a single ballot contest is
either a well-formed vote an overvote, or an undervote. In any contest there is
a maximum number of selections a voter may make, usually one for Mayor, but
often more than one for at-large seats on a Council. In a well-formed vote, the
interpretation of the voter’s marks is that the voter made the maximum number
of allowable selections. In an undervote, the interpretation of the voter’s marks
is that the voter made fewer selections than allowed. Undervotes are legitimate,
and the selections are added to the tallies. In an overvote, the interpretation of
the voter’s marks is that the voter made more selections then were allowed. In
this case none of the voter’s selections are added to the tallies.

14

Should this information
also include what kind
of ballot each ballot is?
I.e., re-marked, phantom,

etc.? -kiniry

These types will be re-
fined when we review the
information provided by
CDOS on 20 July 2017
about Dominion’s file for-
mats. -kiniry

Ballot position number is)
still not explicitly speci-
fied. -kiniry

vote: DATATYPE
WITH SUBTYPES well_formed_vote,
overvote,
undervote,
no_consensus
BEGIN
IMPORTING ballots
well_formed_vote?(choices:set[choice]):
make_well_formed_vote: well_formed_vote
overvote?(choices:set[choice]): make_overvote: overvote

undervote?(choices:set[choice]): make_undervote: undervote
no_consensus?: make_no_consensus: no_consensus

Note that the Election Results Reporting project| defines it as “Undervote: Oc-
curs when the voter does not select a candidate in a 1-of-M contest or selects
fewer than N candidates in an N-of-M contest.”

END vote

ballot_interpretation: THEORY
BEGIN
IMPORTING ballots,
vote

A Cast Vote Record (commonly called a “CVR”) is a catalog of choices from
one or more ballots representing distinct voters. In the Colorado system, CVRs
are produced as comma-separated-value files from the Dominion voting system.

cast_vote_record: TYPE = set[set[choice]]
END ballot_interpretation
ballots_collections: THEORY

BEGIN
IMPORTING ballots

Ballots are often ordered, such as after they are hand or machine sorted, when
they are kept in storage that maintains order, or an order is induced upon them
by a random shuffle.

ballot_order: TYPE = sequence[ballot]

Sometimes, but not always, a total order is induced by ballot ids.

15

Should we model a blank
vote separately from an
undervote? Or do they
simply use the term blank
vote to denote an under-
vote? -kiniry

Introduce appropriate
axiom for such. -kiniry

https://github.com/usnistgov/ElectionResultsReporting/

END ballots_collections

2.8 Instructions, Forms, and Reports

Elections have all kinds of different published instructions, forms, and reports.
We enumerate a few here that are specific to Colorado, and relevant to the RLA
Tool in particular.

instructions_forms_reports: THEORY
BEGIN
IMPORTING audits,
ballot_manifests,
election,
information_systems

report: TYPE = [# name: string #]
audit_investigation_report: TYPE =

[# name: string, investigation_report: string #]
empty_audit_investigation_report: audit_investigation_report

audit_report: TYPE =
[# name: string,
election: election,
audit_board: audit_board,
county_administrator: county_administrator #]

summary_results_report: TYPE =
[overvotes: nat, undervotes: nat,
blank_voted_contests: nat, valid_write_in_votes: nat]

results_file: TYPE FROM file

form: TYPE
sos_audit_form: TYPE

instructions: TYPE
ballot_instructions: TYPE FROM instructions
sos_voter_intent_guide: TYPE FROM instructions

ballots_under_audit_instructions: TYPE =

[sequence[ballot], sequencel[ballot_style],
sequence [ballot_manifest_info]]

16

END instructions_forms_reports

2.9 Roles

Within the RLA Tool, a person involved with the system can have a number of
roles. Some of these roles are mutually exclusive for legal reasons.

roles: THEORY
BEGIN
IMPORTING elections,
FAFSSL

Audit board members are members of the public who come from different po-
litical parties. According to

audit_board_member: TYPE FROM person
canvass_board: TYPE = set[person]

colorado_department_of_state: TYPE
cdos: TYPE = colorado_department_of_state

sos: TYPE FROM person
state?: [sos -> state]

county_clerk: TYPE FROM person
county?: [county_clerk -> county]

administrator: TYPE FROM person
audit_supervisor: TYPE FROM person

county_administrator: TYPE FROM administrator
state_administrator: TYPE FROM administrator

system_administrator: TYPE FROM administrator
candidates_cannot_be_administrators: AXIOM TBD

END roles

17

canvass_boards: THEORY
BEGIN
IMPORTING election,
roles

canvass_board?: [election -> canvass_board]
END canvass_boards

2.10 Cryptography

Cryptography is used, via hashing, to verify that the verified ballot manifests
and CVRs uploaded by counties and stored in the file system and database
have integrity and repudiation. I.e., checking a cryptographic hash of a file
guarantees: (a) to the Secretary of State and state administrators that the
uploaded files are the ones that county administrators thinks they are (thus,
there was no error in data transmission), and (b) to the public that the uploaded
files have not been altered in any fashion.

cryptography: THEORY
BEGIN

digest: TYPE = bvec[256]

sha256: [size: nat, bvec[size] -> digest]
END cryptography

2.11 Randomness

Choosing a random sample of ballots is key to the legitimacy of any risk-limiting
audit. Legitimacy depends on a high-quality process for the random samples.
The Colorado RLA Tool will produce a random order of all the ballots once and
for all; then random samples of any size, or restricted to any County or set of
Counties, can be created as needed by considering the ballots in that random
order.

randomness: THEORY
BEGIN
unit: TYPE

There are many algorithms available to produce a pseudorandom sequence of
numbers. The relevant text from Colorado’s RDPR is quoted below. As stated
in RDPR-6-Jul-2017 Section 25.2.2(K):

18

The Secretary of State will convene a public meeting on the
tenth day after election day to establish a random seed for use with
the Secretary of State’s RLA tool’s pseudo-random number gener-
ator based on Philip Stark’s online tool, Pseudo-random Number
Generator using SHA-256. This material is incorporated by refer-
ence in the election rules and does not include later amendments
or editions. The following material incorporated by reference is
posted on the Secretary of State website and available for review
by the public during regular business hours at the colorado secre-
tary of state’s office: pseudo-random number generator using SHA-
256 available at https://www.stat.berkeley.edu/~stark/java/
html/sha256rand.htm. The Secretary of State will give public no-
tice of the meeting at least seven calendar days in advance. The seed
is a number consisting of at least 20 digits, and each digit will be
selected in order by sequential rolls of a 10-sided die. The Secretary
of State will randomly select members of the public who attend the
meeting to take turns rolling the die, and designate one or more staff
members to take turns rolling the die in the event that no members
of the public attend the meeting. The Secretary of State will publish
the seed on the audit center immediately after it is established.

As such, the seed of our pseudorandom algorithm must be a natural number
that is at least twenty digits long.

seed: TYPE = {n: nat | 9999999999999999999 < n}

The random number generator itself must be seeded with the seed provided by
the Department of State, and then after being seeded it must deterministically
produce new pseudorandom numbers in a specified range.

rng: TYPE = [the_minimum: nat, the_maximum: nat ->
{n: nat | the_minimum <= n AND n <= the_maximum}]

seed_prng: TYPE = [seed, with_replacement: boolean,
the_minimum: nat, the_maximum: nat -> rng]

The algorithm used by Rivest and Stark in the aforementioned sample code uses
the SHA-256 cryptographic hash function in counter mode to obtain determin-
istic random input. Here is the relevant documentation from Rivest’s Python
implementation, available via StarkRLAJS|

The cryptographic hash function SHA-256 is used in this pro-
gram. This hash function maps arbitrary strings of input text to
“pseudo-random” 256-bit integers. The pseudo-randomness of this
function is of the highest quality: SHA-256 is a U.S. government
standard and has passed the most stringest testing.

The SHA-256 hash function is used in “counter mode” to obtain
the desired sample. The sample elements are picked one by one from
a..b, with the i-th pick is generated by applying SHA-256 to the

19

https://www.stat.berkeley.edu/~stark/java/html/sha256rand.htm
https://www.stat.berkeley.edu/~stark/java/html/sha256rand.htm
https://github.com/FreeAndFair/RLA/blob/master/StarkRLAJS/sampler.py

Table 1: Example Refinement for CORLA Randomness Subsystem

Formal Specification Artifact Implementation Artifact

randomness theory Java class us.freeandfair.corla.crypto.PseudoRandomNumbes
seed PseudoRandomNumberGenerator.my_seed

seed,prng(seed, replace, min, max) | new PseudoRandomNumberGenerator (seed, replace, min, ma:
rng(min, max) rng = new PseudoRandomNumberGenerator(seed, replace, m

text string obtained by following the seed by a comma and then the
decimal representation of i. This value reduced modulo (b-a+1) and
added to a to obtain a value in the range a..b. This value is rejected
if sampling is done without replacement and the value obtained is a
duplicate of a previously obtained value.

We will use this randomness module as our first and simplest example of
refinement from our formal specification to our implementation. The follow-
ing table summarizes the refinement relationship between randomness and our
implementation.

There are a few things to note about this refinement.

1. The size constraint on the type seed is expressed in the implementation
via a precondition on its constructor, expressed both in JML and in an
inline assert, and two class invariants, one which constrains seed’s length
and the other which characterizes its content. Note that the latter is
necessary because we are mapping from a PVS nat (natural number, a
non-negative integer) to a java.lang.String (which encodes arbitrary
unicode characters).

2. A specification function, such as rng, is refined to a sequence of ac-
tions in the implementations. In this example, rng maps to a call to
the constructor of PseudoRandomNumberGenerator followed by a call to
getRandomNumbers.

3. The implementation often has more functionality than is specified in the
formal specification. This is normal, as the specification is an abstraction
of the necessary functionality

END randomness

2.12 Audits

Election audits come in many forms. The two main kinds of audits we focus on
in this system are ballot polling audits and comparison audits, both of which

20

are risk-limiting audits.

audits: THEORY
BEGIN
IMPORTING roles

audit: TYPE

Audits are run by audit boards, whose members come from various constituan-
cies and have various roles. Deciding who is on an audit board is also usually a
matter of law, policy, and history.

audit_board: TYPE = set[audit_board_member]
audit_board_size: AXIOM TBD
audit_board_members_political_parties_disjoint: AXIOM TBD

These two terms are used but underdefined at this time. When the C.R.S. or CO
law is further refined to explain audit investigations (i.e., the process by which
a mismatch between the human adjudication and the machine interpretation is
resolved), then we will have clarity on the notions of “audit investigation” and
“audit progress”.

audit_investigation: TYPE
audit_progress: TYPE

The count of the total number of ballots to audit varies across audit types. For
example, historically in Colorado random audits must audit 500 ballots or 5%
of all ballots, whichever is smaller.

ballots_to_audit: TYPE = nat

We list various other terms relating to audits here. They will be defined and
refined in later versions of the domain model.

contest_margin: TYPE = nat
margin: TYPE = real

digital_ballot_adjudication: TYPE
manual_ballot_adjudication: TYPE

diluted_margin: TYPE FROM margin

21

margin_overstatement: TYPE = nat

margin_understatement: TYPE = nat

random_audit: TYPE
END audits

2.13 Colorado RLAs

Audits ideally come after all the votes are tabulated, canvassed and reconciled.
In Colorado, however, since the certification deadline comes shortly after the
last date for voters to cure signature verification problems, etc., it is highly
unlikely that a RLA could be postponed until after the canvass. An updated
vote count may be released at the end of the tabulation and canvass, and the
risk limit of the audit needs to apply to the updated outcome.

Given these constraints, it is generally best to audit conservatively. For ex-
ample, we could assume that any late-tabulation ballots are cast for the losers.
As discussed in [BanuelosEtAl12], counties should add a batch of phantom bal-
lots to the manifest, one for each possible late-tabulation ballot. Another pos-
sibility, if it turns out that not enough phantom ballots were added, would be
to use more flexible Bayes audit techniques to do a followup audit after the
late-tabulation ballots and tabulations are available; however, that capability is
not implemented at this time.

rlas: THEORY
BEGIN
IMPORTING elections

First, we’ll formalize the general idea of a risk limit from the scientific literature.
risk_limit: TYPE = {n : nonneg_real | n <= 100}
Next, we’ll formalize what is stated in the current draft rules.

RDPR_risk_limit: TYPE = {n : nonneg_real | n <= 5}

Finally, according to the current draft rules, the Secretary of State has an “es-
cape clause”, and one thing that they can choose to do is set any kind of risk
limit they like.

22

RDPR_escape_clause_risk_limit: TYPE = {n : nonneg_real | n <= 100}

risk_limiting_audit: TYPE
RLA: TYPE = risk_limiting_audit

ballot_polling_audit: TYPE FROM risk_limiting_audit

comparison_audit: TYPE FROM risk_limiting_audit

These are some terms of the art that we will more carefully define as the model
is refined.

discrepency: TYPE
random: TYPE
sample_size: TYPE = nat

number_of_ballots_to_audit: [audited_contest -> nat]

Still need to model core
RLA algorithm(s). -

END rlas Tiar
mniry

2.14 Cast Vote Records

Cast vote records, also known as CVRs, are the digital interpretations of paper
ballot records by a computer. They frequently, but not always, contain an in-
terpretation of all voter choices in all contests on a ballot. CVRs are sometimes
syntactically written as comma-separated values, and other times in plain En-
glish. Some CVRs use a election-specific encoding scheme to represent choices
(e.g., a ‘1’ means “John Doe”); others use plain English.

CVRs may (and in the case of CVRs exported from Colorado’s Dominion
system, do) contain information about the ballot beyond the voter choices. For
example, ballot style (which encodes, at a minimum, the set of contests on the
ballot), precinct id and information about voting method (e.g., in-person vs.
mail) may be included.

CDOS requirements mandate that CVRs are exported and uploaded to the
RLA back-end as CSV files by county officials using their voting systems and
the RLA Tool, respectively. For a given election, we

cannot expect a 1-1 corre-
cast_vote_records: THEORY spondence between its

BEGIN) ballots and its CVRs.

IMPORTING ballot_manifests, Phantom ballots and hu-
man error will result in a
23 violation of such a prop-
erty. -kiniry

~

elections_equipment,

information_systems,

vote
cvr: TYPE = [# votes: set[vote],

description: ballot_manifest_info #]

verified?: pred[cvr]
as_csv: [cvr -> csv]
cvr_file: TYPE FROM file
export_cvr: [voting_system -> cvr_filel

It is unclear what a CVR
number is, if anything.

cvr_number: TYPE = nat _kiniry

END cast_vote_records

2.15 User Interfaces

The user interfaces of the system are the visible interactive parts of the appli-
cation. There are three different user interfaces in the RLA Tool. The precise
names of these interfaces are still under discussion; one is for CDOS personnel
responsible for the audit at the state-level, one is for county personnel at the
county-level, and one is for audit board members. Note that all these user in-
terfaces both receive and provide information. Because the public dashboard
only pushes information out, we do not consider it a “user interface”.

user_interface: DATATYPE
WITH SUBTYPES uploading_interface,
cvr_uploading_interface,
county_auditing_interface,
audit_adjudication_interface,
public_interface
BEGIN
uploading_interface?:
make_uploading_interface: uploading_interface
cvr_uploading_interface?:
make_cvr_uploading_interface: cvr_uploading_interface
county_auditing_interface?:
make_county_auditing_interface: county_auditing_interface
audit_adjudication_interface?:
make_audit_adjudication_interface: audit_adjudication_interface

(Tn the audit adjudication
interface, it must be pos-
sible to classify a ballot

24 as unauditable either due

to not finding a voter-

verifiable paper record or
due to it being a phan-
tom ballot. -kiniry

public_interface?:
make_public_interface: public_interface
END user_interface

After a county administrator attempts to upload artifacts to the RLA system’s
server, one of several different messages is shown. Each is self-explanatory in
this domain model, and each must be used in a scenario of the system.

upload_system_message: DATATYPE
WITH SUBTYPES upload_successful,
checking_hash,
hash_verified,
hash_mismatch,
file_type_wrong,
data_parsed,
data_transmission_interrupted,
too_late
BEGIN
upload_successful?: make_upload_successful: upload_successful
checking_hash?: make_checking_hash: checking_hash
hash_verified?: make_hash_verified: hash_verified
hash_mismatch?: make_hash_mismatch: hash_mismatch
file_type_wrong?: make_file_type_wrong: file_type_wrong
data_parsed?: make_data_parsed: data_parsed
data_transmission_interrupted?: make_data_transmission_interrupted:
data_transmission_interrupted
too_late?: make_too_late: too_late
END upload_system_message

Authentication attempts can result in two different kinds of message: either a
person authenticated successfully, or they did not.

authentication_message: DATATYPE
WITH SUBTYPES successful_authentication,
unsuccessful _authentication
BEGIN
successful_authentication?: make_successful_authentication:
successful _authentication
unsuccessful _authentication?: make_unsuccessful_authentication:
unsuccessful_authentication
END authentication_message

25

2.16 Dashboards

The system has several dashboards aimed at specific users and stakeholders.
Department of State officials use the state-wide dashboard; county officials use
the county dashboard; audit board members use the audit board dashboard;
and the general public uses the public dashboard.

dashboard: DATATYPE
WITH SUBTYPES department_of_state_dashboard,
county_dashboard,
audit_board_dashboard,
public_dashboard
BEGIN
IMPORTING elections
department_of_state_dashboard?(counties: set[county]):
make_department_of_state_dashboard:
department_of_state_dashboard
county_dashboard?(county: county):
make_county_dashboard:
county_dashboard
audit_board_dashboard?(county: county):
make_audit_board_dashboard:
audit_board_dashboard
public_dashboard?: make_public_dashboard: public_dashboard
END dashboard

2.17 Department of State Dashboard

The status of uploaded data will be summarized in a Department of State
Dashboard, along with information on which counties have not yet uploaded
their CVRs, and uploads that have formatting or content issues. The status of
data, and results as audits are performed, will be provided for each contest to
be audited.

department_of_state_dashboard: THEORY
BEGIN
IMPORTING dashboard,

elections,
FAFSSL,
instructions_forms_reports,
randomness,
rlas,
ballot_interpretation

CDOS staff, after authenticating to the state-wide dashboard, can see the status
of the entire election. Various static information about the election is displayed

26

along with dynamic information, the type and content of which is dependent
upon the current audit stage.

audit_stage: TYPE = {
pre_audit,
audit_ready_to_start,
audit_ongoing,
audit_complete,
audit_results_published
X
overall_audit_stage:
[department_of_state_dashboard ->
[audit_stage, department_of_state_dashboard]]

State administrators can also pull up the dashboard for any county.

dashboard_for_county:
[department_of_state_dashboard, county ->
county_dashboard]

The state-wide dashboard will provide a way for the Secretary of State to enter
the risk limit(s), as required by RDPR-6-Jul-2017 Section 25.2.2(A).

No later than 30 days before Election Day, the Secretary of State will estab-
lish and publish on the audit center the risk limit(s) that will apply in RLAs
for that election. The Secretary of State may establish different risk limits for
comparison audits and ballot polling audits, but in no event will the risk limit
exceed five percent.

establish_risk_limit_for_comparison_audits:
[department_of_state_dashboard, risk_limit ->
department_of_state_dashboard]

Because ballot polling audits are mentioned in the current draft rules, we must
formalize the associated concepts, even though we are not implementing support
for ballot polling audits in this first version of the RLA Tool.

establish_risk_limit_for_ballot_polling_audits:
[department_of_state_dashboard, risk_limit ->
department_of_state_dashboard]

The RLA status of each county is a part of the Department of State dashboard.
At the moment, from a UX point of view, we are assuming that it is simply
rolled into the overall dashboard, thus there is not a state administrator means
by which to trigger an update of this data separate from all other election data.

upload_status: [department_of_state_dashboard -> set[county_status]]

The state-wide dashboard will provide a mechanism for the Sec-
retary of State to enter and publish the list of contests to be audited.

27

No later than 5:00 PM MT on the Friday after Election Day, the
Secretary of State will select for audit at least one statewide contest,
and for each county at least one countywide contest. The Secretary
of State will select other ballot contests for audit if in any particular
election there is no statewide contest or a countywide contest in
any county. The Secretary of State will publish a complete list of
all audited contests on the audit center. The Secretary of State will
consider the following factors in determining which contests to audit:

1. The closeness of the reported tabulation outcome of the con-
tests;

2. The geographical scope of the contests;

3. Any cause for concern regarding the accuracy of the reported
tabulation outcome of the contests;

4. Any benefits that may result from opportunistically auditing
certain contests; and

5. The ability of the county clerks to complete the audit before
the canvass deadline.

audit_reason: TYPE =
{ state_wide_contest, county_wide_contest, close_contest,
geographical_scope, concern_regarding_accuracy,
opportunistic_benefits, county_clerk_ability, no_audit }
select_contests_for_comparison_audit:
[department_of_state_dashboard, set[[contest, audit_reason]] ->
[department_of_state_dashboard, set[audited_contest]]]
at_least_one_statewide_contest: AXIOM TBD
at_least_one_countywide_contest_per_county: AXIOM TBD

At the moment, CDOS has not contracted support for the selection of oppor-
tunistic audited contents. But, since we know that CDOS wishes to support
this feature in the future, we model it for future support.

select_contest_for_opportunistic_audit:
[department_of_state_dashboard,contest, audit_reason ->
[department_of_state_dashboard, opportunistic_contest]]

The state-wide dashboard will allow the Secretary of State to select ballots
at random as required by law (assuming that a truly random seed has been
entered). Ballots can be randomly selected for audit in two ways, either by:

1. permuting all ballots and auditing a prefix of ballots (thereby auditing
ballots “with no replacement”); or

2. randomly selecting ballots ballot-by-ballot (thereby auditing ballots “with
replacement” as the same ballot may be audited multiple times).

28

ballot_permutation:

[set[ballot] -> list[ballot]]
random_list_of_ballots:

[set[ballot] -> sequence[ballot]]

print_ballots_under_audit_list:
[county, list[ballot] -> ballots_under_audit_instructions]

The Secretary of State will randomly select the individual ballots to audit. The
Secretary of State will use a pseudo-random number generator with the seed
established under subsection (H) of this rule to identify individual ballots as
reflected in the county ballot manifests. The Secretary of State will notify each
county of, and publish on the audit center, the randomly selected ballots that
each county must audit no later than 11:59 PM MT on the tenth day after
Election Day.

publish_seed:

Obviously this type has
to be strengthened con-
siderably to guarantee
permutation. That is,
that both the set and the
list are finite and con-
verting the list into a set
results in a set equivalent
to the original set. -kiniry)

(Write a specification for
publishing data to audit.

-kiniry

[department_of_state_dashboard, seed -> department_of_state_dashboard]

publish_ballots_to_audit:
[department_of_state_dashboard, set[cast_vote_record] ->

[department_of_state_dashboard, list[[county, list[ballot]]]]]

The Secretary of State can indicate that a contest must be a full hand count
contest.

indicate_full_hand_count_contest:
[department_of_state_dashboard, contest ->
[department_of_state_dashboard, full_hand_count_contest]]

Lastly, state administrators can simply get updates on the current state of the
election under audit and its RLAs.

[department_of_state_dashboard ->
[department_of_state_dashboard,
audit_stage,
risk_limit,
set[[audited_contest, audit_reason]],
set [county_status],
boolean, % cvr_uploads_complete?
boolean, % manifest_uploads_complete?
seed,

refresh:

set [full_hand_count_contest]]]
END department_of_state_dashboard

29

2.17.1 County Dashboard

The County dashboard is used by county officials to communicate with the
Secretary of State for the purpose of planning and executing risk-limiting audits.

county_dashboard: THEORY
BEGIN
IMPORTING ballot_manifests,

cast_vote_records,
cryptography,
dashboard,
election,
information_systems,
roles,
server,
upload_system_message,
department_of_state_dashboard

Some of the generation information contained in the county dashboard is stip-
ulated by C.R.S.

general_static_information: string

The status of the county dashboard depends upon which stage of the county
has reached in its audit process. The status is obtained via the following func-
tion. Briefly, either the county has uploaded no information at all (no_data),
it has uploaded its verified CVRs successfuly (cvrs_uploaded_successfully),
or county administrators tried to upload their CVRs and there was an error of
some kind (error_in uploaded_data).

county_status:
[county -> county_status]

establish_audit_board:
[county_dashboard, set[elector] -> county_dashboard]

To prepare for uploading of artifacts to the Secretary of State, counties conduct-
ing a comparison audit must verify several properties (all of which are discussed
in Section . After verifying those properties, counties must generate a di-
gest of the CVR file using a hash designated by the Secretary of State. After
verifying the accuracy of the CVR export, the county must apply a hash value
to the CVR export file using the hash value utility provided by the Secretary of
State.

Note that this function/feature is implemented by a tool provided by the
Secretary of State. We have not been asked to produce such a tool, though

30

one could compute the hash of a file locally in a web browser, so this could be
part of our system. From an assurance standpoint it is a better idea to use
a completely separate tool, developed independently from us, to perform this
hashing.

generate_cvr_digest: [cvr_file -> digest]

Each county performing a comparison audit must upload a hash (digest) of its
ballot manifest to the RLA Tool.

generate_ballot_manifest_digest: [ballot_manifest_file -> digest]

Each county conducting a comparison audit must upload:

1. its verified and hashed ballot manifest to the RLA Tool;

county_upload_verified_ballot_manifest:
[county_dashboard, ballot_manifest_file, digest ->
[county_dashboard, email, upload_system_message]]

All ballot manifests are stored in a relation between counties and ballot
manifest files. See ballot_manifest_table below.

2. its verified and hashed CVR export to the RLA Tool; and

upload_verified_cvrs:
[county_dashboard, cvr_file, digest ->
[county_dashboard, email, upload_system_message]]

All CVRs are stored in a relation between counties and CVR files. See
cvr_table below.

3. its RLA tabulation results export to the Secretary of State’s election night
reporting system.

upload_tabulation_results:
[enr_server, cvr_tabulation_outcome -> enr_server]

After the audit board is established, all CVRs and ballot manifests are success-
fully uploaded, the county administator can start the audit.

start_audit:
[county_dashboard -> audit_board_dashboard]

31

Improve/strengthen the
dependent types in these
upload signatures below.
-kiniry

@review cdos Must the
Department of State give
an explicit go-ahead, or
can the county simply im-
mediately start the audit?
-kiniry

No later than 11:59 PM MT on the ninth day after Election Day, each county
conducting a ballot polling audit must upload:

1. its verified and hashed ballot manifest to the RLA tool; and

2. its RLA tabulation results export to the Secretary of State’s election night
reporting system.

There is exactly one audit board dashboard for each county.

audit_board_dashboard:
[county_dashboard -> audit_board_dashboard]

Note that both of these uploads are facilitated by the functions defined above,
as their types do not mandate a particular kind of audit on the county. Lastly,
county administrators can see updates on the current state of their audit.

refresh: [county_dashboard ->
[county_dashboard,
string, % general_static_information
set[elector], % the audit board members
digest, ’% the ballot manifest digest
digest, % the CVR digest
set[contest], % the contests on the ballot in this county
set[[audited_contest, audit_reason]], % the contests under
date_and_time, % start date and time of the audit
number of ballots according to CVR

nat,

nat,

nat,

nat,

nat]
]

)
h
h
h
h

END county_dashboard

total
total
total
total

estimated number of ballots to audit according to RLA
number of ballots audited thus far

number of discrepancies (overstatements +

number of times the audit board could not

2.17.2 Audit Board Dashboard

There are a number of assumptions that the RLA Tool audit board dashboard
makes with respect to the C.R.S. It also facilitates the comparison audit.

audit_board_dashboard: THEORY

BEGIN
IMPORTING dashboard,
audits,
ballots,

cast_vote_records,
instructions_forms_reports,
storage_container,
department_of_state_dashboard

32

The audit board must locate and retrieve from the appropriate storage container
each randomly selected ballot. The audit board must verify that the seals on
the appropriate storage containers are those recorded on the applicable chain-
of-custody logs.

ballots_to_audit_to_storage_container_list:
[list[ballot] -> list[storage_container]]
verify_all_seals_on_storage_containers:
[list [storage_container] -> list[storage_container]]

The audit board must examine each randomly selected ballot or VVPAT and
report the voter markings or choices using the RLA Tool or other means specified
by the Secretary of State.

next_ballot_for_audit:
[audit_board_dashboard ->
[ballot_manifest_info, audit_board_dashboard]]

A list of which ballots have been audited thus far is also available on the Ul

audit_cvrs:
[audit_board_dashboard ->
[1ist[cvr], audit_board_dashboard]]

We call the report of the markings on a ballot an Audit CVR, or aCVR for
short.

aCVR: TYPE = list[ballot_mark]
report_markings:
[audit_board_dashboard, ballot_manifest_info,
aCVR -> audit_board_dashboard]
report_ballot_not_found:
[audit_board_dashboard, phantom_ballot -> audit_board_dashboard]

If a ballot does not have a voter-verifiable paper ballot associated with it then
the Audit Board reports the lack of voter-verifiable paper ballot.

report_ballot_has_no_voter_verifiable_paper_record:
[audit_board_dashboard, non_voter_verifiable_ballot —>
audit_board_dashboard]

If supported by the county’s voting system, the audit board may
refer to the digital image of the audited ballot captured by the vot-
ing system in order to confirm it has retrieved the correct ballot
randomly selected for audit. If the scanned ballot was duplicated
prior to tabulation, the audit board must also retrieve and compare
the markings on the original ballot. The audit board must complete
its reports of all ballots randomly selected for audit no later than
5:00 PM MT one business day before the canvass deadline.

33

The audit board must interpret voter markings on ballots se-
lected for audit in accordance with the Secretary of State’s voter
intent guide.

To the extent applicable, the Secretary of State will compare
the audit board’s reports of the audited ballots to the correspond-
ing CVRs and post the results of the comparison and any margin
overstatements or understatements on the audit center.

compare_reported_markings_to_cvr:
[ballot, cvr, list[ballot_mark] ->
[margin_overstatement, margin_understatement]]

The RLA will continue until the risk limit for for each audited contests is met
or until a full hand count results. If the county audit reports reflect that the
risk limit has not been satisfied in an audited contest, the Secretary of State will
randomly select additional ballots for audit. We presume at the moment that
if errors are made during the auditing process, we should capture information
in the RLA Tool about those errors and their mitigation and resolution.

submit_audit_investigation_report:
[audit_board_dashboard, audit_investigation_report ->
audit_board_dashboard]

submit_audit_report:
[audit_board_dashboard, audit_report -> audit_board_dashboard]

This function updates a set of relations between counties and audit reports.
audit_reports: set[[county, audit_report]]

We need to know when all audit reports have been submitted to transition the
Department of State Dashboard to its DOS Audit Complete state.

audit_complete?: [audit_report -> boolean]
signoff_intermediate_audit_report:
[audit_board_dashboard, audit_report -> audit_board_dashboard]

Lastly, audit board members see updates on the current state of their audit.

refresh: [audit_board_dashboard —>
[audit_board_dashboard,
string,
set[[audited_contest, audit_reason]],
county_status,
list[[ballot, storage_container]],
[ballot, ballot_id, ballot_style]

]
END audit_board_dashboard

34

2.17.3 Public Dashboard

public_dashboard: THEORY
BEGIN
IMPORTING dashboard

We are currently proposing that the following set of data and reports be included
on the public dashboard:

1. Target and Current Risk Limits, by Contest

Audit Board names by County

County Ballot Manifests, CVRs and Hashes (status & download links)
Seed for randomization

Ballot Order

A S

List of Audit Rounds (number of ballots, status by County, download
links)

7. Link to Final Audit Report

END public_dashboard

2.18 Authentication

Authentication is currently underspecified in our system design as we do not yet
have information from CDOS on the nature and kind of their mandated two-
factor authentication system. Consequently, we have only modeled the necessary
concepts and features of any two-factor authentication system. Included in
this model are the ideas of usernames, passwords, other authentication factors
mentioned in CDOS documents (such as biometrics and physical tokens like
smartcards and one-time authentication code books), etc.

Given that CDOS is handling two-factor authentication, it is unclear if they
want any additional features such as a password reset.

authentication: THEORY
BEGIN
IMPORTING ballots,
cast_vote_records,

cryptography,

35

dashboard,

dashboard,

election,
information_systems,
roles,
upload_system_message

credential: TYPE

username: TYPE FROM credential
password: TYPE FROM credential
complex_enough?: [password -> bool]
biometric: TYPE FROM credential
physical_token: TYPE FROM credential

authentication: TYPE FROM [person, set[credentiall]
two_factor_authentication: TYPE =
[[username, password], [physical_token + biometric]]

In order to obtain a new, valid credential, some authority must issue credentials
to a specific person.

issue_credential: TYPE =
[cdos, county_election, person -> [person, two_factor_authentication]]

What are the credentials that have been issued to this person?

credential?: [person -> two_factor_authentication]

Is this person authenticated?

authenticated: [person, two_factor_authentication -> bool]

What follows are several functions used to authenticate various roles to their
respective dashboards.

Each dashboard has an abstract state machine that captures the dashboard’s
workflow and consequntly identifies which features are visible to its users at
various stages. Those abstract state machines and features are modeled in the

dashboard modules below. We focus only on authentication here. Introduce an authentica-
tion monad and a state
monad for our ASMs. -
kiniry

authenticate_county_administrator:
[county_dashboard, county_administrator,
two_factor_authentication -> bool]

authenticate_state_administrator:
[department_of_state_dashboard, state_administrator,
two_factor_authentication -> booll

36

END authentication

3 Computer System

3.1 System Architecture

As mentioned early in this chapter, the RLA Tool is a client-server system. As
usual for these kinds of systems, the server part of this architectural style is
known as the back-end and the client part as the front-end.

system_architecture_component: DATATYPE
WITH SUBTYPES back_end,
front_end
BEGIN
IMPORTING database,
information_systems,
server

back_end?(servers: setl[server],
networks: set[network],
databases: set[database]): make_back_end: back_end
front_end?(web_browser: web_browser,
code: javascript_code): make_front_end: front_end
END system_architecture_component

The RLA system focuses on a single election and has a back-end and a front-end.

rla_tool: DATATYPE
BEGIN
IMPORTING election,
system_architecture_component

rla_tool?(election: county_election,
front_end: front_end,
back_end: back_end): make_rla_tool
END rla_tool

The system architecture consists of:

1. several servers of different kinds deployed and configured in a redundant
fashion as described elsewhere;

37

2. several databases whose tables and data are transactionally identical (this
means that after each transaction completes, all databases are guaranteed
to never witness to a client an inconsistent state relative to that transac-
tion);

3. a JavaScript-based front-end whose code comes only from the system’s
web servers; and

4. HTTPS-based connections between the front-end and the back-end over
which the web application transmits data, including new HTML pages,
style sheets, data input by the web browser user, etc.

system_architecture: THEORY
BEGIN
IMPORTING rla_tool,
server,
system_architecture_component

rla: VAR rla_tool
be: VAR back_end
fe: VAR front_end
dbl, db2: VAR database_server

make_rla_tool: [back_end, front_end -> rla_tooll]

javascript_code?: [front_end -> javascript_codel
code_origins?: [javascript_code -> web_server]

The front-end, which is written in TypeScript and JavaScript, is provided to a
web browser client directly from the web server.

browser_code_origins: AXIOM
(FORALL (rla):
member (code_origins?(code(fe)), servers(be))
WHERE fe = front_end(rla), be = back_end(rla))

transactionally_synchronized?: [set[database] -> bool]

The back-end consists of two or more servers, two or more networks, and two
or more databases. At least two of each is necessary because the system must
have redundancy to be fault tolerant and not have a single point of failure.

redundancy: AXIOM
(FORALL (be): 2 <= card(servers(be))
AND 2 <= card(networks(be))
AND 2 <= card(databases(be)))

38

Multiple databases need multiple synchronized database servers among the
back-end’s servers. Note that our model is simplified here insofar as we are
presuming that all databases across synchronized database servers are synchro-
nized. It is certainly possible to deploy synchronized databases in a fashion that
does not fulfill this requirement, but for all databases relevant to this system,
this requirement does hold.

database_redundancy: AXIOM
(FORALL (be): EXISTS (dbil, db2):
member (dbl, servers(be)) AND member(db2, servers(be))
AND dbl /= db2
AND transactionally_synchronized?(union(databases(dbl),databases(db2))))
END system_architecture

3.2 System Assumptions

This system architecture includes a number of explicit assumptions derived from

CR.S.

system_assumptions: THEORY
BEGIN
IMPORTING election,
FAFSSL

e: VAR county_election

According to the section entitled “CVR Export Verification”, counties conduct-
ing a comparison audit must verify that:

1. The number of individual CVRs in its CVR export equals the aggregate
number of ballots reflected in the county’s ballot manifest as of the ninth
day after election day;

CVR_count_equals_ballot_manifest_count: AXIOM TBD

2. The number of individual CVRs in its CVR export equals the number of

ballots tabulated as reflected in the summary results report for the RLA

tabulation;

CVR_count_equals_summary_results_report_count: AXIOM TBD

39

3. The number of individual CVRs in its CVR export equals the number
of in-person ballots issued plus the number of mail ballots in verified-
accepted stage in SCORE, plus the number of provisional ballots and
property owner ballots included in the RLA tabulation, if any; and

CVR_count_equals_aggregate_count_over_ballot_kinds: AXIOM TBD

4. The vote totals for all choices in all ballot contests in the CVR export
equals the vote totals in the summary results report for the RLA tabula-
tion.

CVR_vote_totals_equals_summary_results_vote_totals: AXIOM TBD

END system_assumptions

3.3 System Logging

The system must log a variety of events. One reason to log information is to
help understand how the system is operating, fix bugs post-facto, understand
how users are using the system, etc. Another, reason to log in this context of
this system is to provide an indelible record of administrator and auditor actions
so that any audit can be “replayed” by any third party.

logging: THEORY

BEGIN
log: TYPE = sequence[string]
chain_of_custody_log: TYPE FROM log
rla_tool_log: TYPE FROM log

END logging

3.4 Data Model

A single, mirrored relational database is used to store all persistent information
for the RLA Tool. In order to define the data model of the system, we need to:

1. identify the core concepts that must be persistent in the system

2. identify the relationships that must be persistent in the system

40

3. derive from these pieces of information:

(a) the necessary tables that collect concepts,
(b) the indexing concept of each table, and

(c) definitions of the appropriate joins that realize relationships

data_model: THEORY
BEGIN
IMPORTING FAFSSL,

database,
information_systems,
roles,
rla_tool,
authentication,
rlas,
department_of_state_dashboard,
cast_vote_records

be: VAR back_end
db: VAR database

The first set of data persistently stored relates to authentication. Some of
this data will be stored in the two-factor authentication system provided by
CDOS. All other data must be stored in the RLA Tool database. In general,
each entry in the authentication table is simply an administrator and two-factor
authentication credential pair.

authentication_table: TYPE =
sequence [[administrator, two_factor_authentication]]

The Department of State dashboard permits State administrators to establish
risk limits for each contest, specify which kinds of audits are used for which
races and in which counties, etc. Most of the dynamic data available to State
administrators is provided via County administrators using the County dash-
board.

state_status_table: TYPE =
sequence [[# county: county,
general_status: county_status,
audit_status: audit_stage,
date: string #]]

There is also some background information that relates to the RLA overall,
much of which is relevant to the Department of State dashboard. In particular,
geographic (such as the identity of the State and its Counties) and political
(registered political parties) information must be stored, as must information
about each election under audit.

41

Notice that these tables are simply a flattening of the election datatype.
This is a standard pattern in mapping HOL specifications to relational data
models.

geography_table: TYPE =
sequence [[nation, state, county]]

political_party_table: TYPE =
sequence [[political_partyl]

county_contest_table: TYPE =
sequence [[county, contest]]

public_meeting_to_determine_seed_table: TYPE =

[# location: string, date: string #]
rla_information_table: TYPE =

sequence[[RLA, audit_reason, contest, risk_limit]]

We formalize the list of ballots under audit and organize them both by contest
and by county. The former is defined when the RLA algorithm randomly chooses
ballots. The latter is populated by filtering the former by county, and it is what
is shared with counties via the Audit Board Dashboard.

audited_ballot_by_contest_list_table: TYPE =
sequence [[contest, sequence[ballot_manifest_info]]]
audited_ballot_by_county_list_table: TYPE =
sequence [[county, sequence[ballot_manifest_info]]]

County administator actions create and update several kinds of data. For ex-
ample, they define who is on their audit boards, they generate digests of files
critical to the audit (principly, ballot manifests and CVRs), they upload those
files, etc.

For general county information, we currently model the data as property /value
pairs in a record. For example, we imagine that each county will want to display
who their County Clerk is, etc.

county_general_information_table: TYPE =
sequence [[# property: string, value: string #]]
audit_board_table: TYPE =
sequence [[county, audit_board_member]]
ballot_manifest_digest_table: TYPE =
sequence [[# county: county,
ballot_manifest_file_name: string,
digest: string,
data: ballot_manifest_file #]]
cvr_digest_table: TYPE =
sequence [[# county: county,
cvr_file_name: string,
digest: string,
data: cvr_file #]]

42

ballot_manifest_table: TYPE =
sequence [[county, ballot_manifest_info]]

Cast vote records uploaded by counties contain CVRs of three kinds: CVRs for
local (county) contests, CVRs for contests that span counties, and CVRs for
contests that span the whole state. These latter two cases are identical from a
modeling point of view, as the whole state is simply a spanning contest over all
counties.

We can store and organize this information in several different ways. First,
we can simply store the individual CVRs uploaded by a given county in a table.

cvr_table: TYPE =
sequence[[county, cvr]]

We need a query to determine when the Department of State Dashboard can
show the full set of contests in the state and permit the Secretary of State to
choose which contests are under audit. This query is answered by examining
every county’s status (provided by the refresh endpoint of the DOS dashboard)
to see that they are all have value cvrs_uploaded_successfully.

cvr_uploads_complete?: [cvr_table -> boolean]
ballot_manifest_uploads_complete?: [ballot_manifest_table -> boolean]

But we also need to store all CVRs for each contest, aggregating all CVRs across
the upload from all counties in which the contest was on the ballot.

contest_cvr_table: TYPE =
sequence [[contest, cvr]]

Tabulation results as calculated from the CVRs.

tabulation_result_table: TYPE =
sequence [[contest, cvr_tabulation_outcome]]

While running the RLA, the Audit Board uploads information about each ballot
they audit. Also, if any investigations are made and remedied during the audit,
that information must be stored as well. Finally, after an audit is complete an
audit report is uploaded and stored.

ballots_under_audit_table: TYPE =
sequence [[ballot,
list[ballot_mark],
cvr,
margin_overstatement,
margin_understatement]]
auditing_investigations_table: TYPE =
sequence [[county, audit_investigation_report]]
audit_reports_table: TYPE =
sequence [[county, audit_report]]
rla_summary_results_table: TYPE =
sequence [[contest, summary_results_report]]

43

All of the information on the public dashboard is derived from the above data. Add election as first col-
umn to every table? Or
have a different DB per
election? -kiniry

END data_model

4 Abstract State Machine

Each dashboard has its own abstract state machine (ASM). The RLA Tool’s
ASM is, at least in theory, the composition of the composed of the three dash-
board ASMs. We specify ASM’s transitions using the finite automatas’ standard
tabular format.

asm: THEORY
BEGIN
IMPORTING FAFSSL,
department_of_state_dashboard

In order to formalize ASMs in general, we need to define a few relevant types.
Note that we are modeling deterministic ASMs, thus transitions can depend
upon not only the current state and some event, but also an arbitrary boolean
expression that typically involves system state. Since our ASMs are determin-
istic, transitions map to only a single target state, rather than a set of states as
one would see in a non-deterministic ASM.

event: TYPE
asm_state: TYPE
asm_event: TYPE FROM event
asm_transition: TYPE =
[# start_state: asm_state, event: asm_event, end_state: asm_state #]
asm_transition_function: TYPE = set[asm_transition]

Consequently, the core features of the ASM implementation in the business logic
of the RLA Tool are:

e What is the current state of the system?

current_state: TYPE = [dashboard -> asm_state]
e What events are enabled?

enabled_events: TYPE = [dashboard -> set[asm_event]]
e Transition to the next state based upon this event.

step_event: TYPE = [[dashboard, asm_event] -> [dashboard, asm_state]]

44

e Transition to the next state based upon this transition.

step_transition: TYPE = [[dashboard, asm_transition] -> [dashboard, asm_state]]

e Are we in a initial state?

initial?: TYPE = [dashboard -> boolean]

e Are we in a final state?

final?:

asm: TYPE =

TYPE = [dashboard -> boolean]

[# identity: string,
states: set[asm_state],
events: set[asm_event],
transitions: asm_transition_function,
initial_state: asm_state,
final_states: set[asm_state] #]

We will first specify the ASM for the Department of State dashboard. Its states
describe the sequence of steps that state administrators must take to start,
observe, and complete an RLA. The state initial is the initial state of the
ASM; the state audit_results_published is the final state of the ASM.

department_of_state_dashboard_state: TYPE = J, SUBTYPE asm_state

{ di_s,
daa_s,
rls_s,
ctai_s,
rsp_s,
bod_s,
art_s,
ao_s,
ac_s,
arp_s

}

)
h
b
)
)
)
)
h
h
h

dos_initial_state
dos_administrator_authenticated
risk_limits_set
contests_to_audit_identified
random_seed_published
ballot_order_defined
audit_ready_to_start
audit_ongoing

audit_complete
audit_results_published

Various events, most of which are triggered by state administrators using the
RLA Tool, cause state changes. These events are named according to their cor-
responding functional definitions in earlier theories. E.g., the authenticate -

state_administrator_event relates to the authenticate_state_administrator

function and its realization via an endpoint.

45

Explain ASM definition.
-kiniry

|

department_of_state_dashboard_event: TYPE = I, SUBTYPE asm_event
{ asa_e, % 1. authenticate_state_administrator_event
erlfca_e, % 2. establish _risk_limit_for_comparison_audits_event
scfca_e, ' 3. select_contests_for_comparison_audit_event
pdta_e, % 13. publish_data_to_audit @todo kiniry

ps_e, % 4. publish_seed_event

pbta_e, % 5. publish_ballots_to_audit_event

rm_e, % 7. 8. any report_markings call by any county
ifhcc_e, % 9. 10. indicate_full_hand_count_contest_event
cac_e, % 11. county_audit_complete_event

par_e, % 12. publish_audit_report

r_e, % 13. refresh_event

s_e, % 6. skip_event

n_e % no_event

}

dos_states: set[asm_state]

dos_events: set[asm_event]
dos_transitions: asm_transition_function
dos_initial_state: asm_state
dos_final_states: set[asm_state]

dos_state: VAR asm_state
dos_event: VAR asm_event
dos_asm_function: VAR asm_transition_function

As there is only a single Department of State, then our system has only a single
instance of this ASM.

dos_dashboard_asm: asm =
(# identity := "DOS",
states := dos_states,
events := dos_events,
transitions := dos_transitions,
initial_state := dos_initial_state,
final_states := dos_final_states #)

county_dashboard_state: TYPE = J SUBTYPE asm_state

{ ci_s, % county_initial_state
caa_s, % county_administrator_authenticated
abe_s, % audit_board_established_state
Discuss up-
load _system_message. -
bm_tl_s, % upload_ballot_manifest: too_late kiniry

bm_dti_s, % upload_ballot_manifest: data_transmission_interrupted

46

bm_us_s, % upload_ballot_manifest: upload_sucessful
bm_ch_s, % upload_ballot_manifest: checking_hash
bm_hm_s, % upload_ballot_manifest: hash_mismatch
bm_hv_s, % upload_ballot_manifest: hash_verified
bm_pd_s, 7% upload_ballot_manifest: parsing_data
bm_ftw_s, 7% upload_ballot_manifest: file_type_wrong
bm_dp_s, % upload_ballot_manifest: data_parsed
cvr_tl_s, 7% upload_cvrs: too_late

cvr_dti_s, % upload_cvrs: data_transmission_interrupted
cvr_us_s, /% upload_cvrs: upload_sucessful

cvr_ch_s, % upload_cvrs: checking_hash

cvr_hm_s, % upload_cvrs: hash_mismatch

cvr_hv_s, % upload_cvrs: hash_verified

cvr_pd_s, % upload_cvrs: parsing_data

cvr_ftw_s, % upload_cvrs: file_type_wrong

cvr_dp_s, /% upload_cvrs: data_parsed

cau_s, % county_audit_underway
cac_s % county_audit_complete

}

county_dashboard_event: TYPE = J, SUBTYPE asm_event

{ aca_e, % 1. authenticate_county_administrator_event
eab_e, % 2. establish_audit_board_event
cuvbm_e, % 3. 4. 5. 7. county_upload_ballot_manifest_event
uvc_e, % 16. 17. 19. 21. upload_cvrs_event
sa_e, % 29. start_audit_event
r_e, % 30. refresh_event
s_e, % 1. 6. 8. 9. 10. 11. 12. 13. 14. 15. 18. 20. skip_event
n_e % no_event

}

county_dashboard_states: set[asm_state]
county_dashboard_events: set[asm_event]
county_dashboard_transitions: asm_transition_function
county_dashboard_initial_state: asm_state
county_dashboard_final_states: set[asm_state]

c_state: VAR county_dashboard_state
c_event: VAR county_dashboard_event
c_asm_function: VAR asm_transition_function

Each state has several counties, and each county has an ASM. Thus there is a
relation between counties and county dashboard ASMs.

county_dashboard_asm: asm =

47

(# identity := "county ID",

states := county_dashboard_states,

events := county_dashboard_events,

transitions := county_dashboard_transitions,
initial_state := county_dashboard_initial_state,
final_states := county_dashboard_final_states #)

county_to_county_dashboard_asm_relation: TYPE =
pred[[county, asm]]

Likewise, there is a similar relation between counties and audit board dashboard
ASMs.

audit_board_dashboard_state: TYPE = J SUBTYPE asm_state
{ ai_s, % audit_initial_state
aip_s, % audit_in_progress_state
iars_s, 7% intermediate_audit_report_submitted_state
ars_s J audit_report_submitted_state

}

audit_board_dashboard_event: TYPE = % SUBTYPE asm_event
{ rm_e, % 2. report_markings_event
rbnf_e, % 3. report_ballot_not_found_event
sair_e, % 4. submit_audit_investigation_report_event
siar_e, % 5. submit_intermediate_audit_report_event
sar_e, /% 6. submit_audit_report_event
8
1

r_e, % audit_refresh_event
as_e, h 7. audit_skip
n_e % no_event

}

audit_board_dashboard_states: set[asm_state]
audit_board_dashboard_events: set[asm_event]
audit_board_dashboard_transitions: asm_transition_function
audit_board_dashboard_initial_state: asm_state
audit_board_dashboard_final_states: set[asm_state]

ab_state: VAR audit_board_dashboard_state
ab_event: VAR audit_board_dashboard_event
ab_asm_function: VAR asm_transition_function

audit_board_dashboard_asm: asm =
(# identity := "county ID",
states := audit_board_dashboard_states,
events := audit_board_dashboard_events,
transitions := audit_board_dashboard_transitions,
initial_state := audit_board_dashboard_initial_state,

48

final_states := audit_board_dashboard_final_states #)
county_to_audit_board_dashboard_asm_relation: TYPE =
pred[[county, asm]]

END asm

5 Endpoints

endpoints: THEORY
BEGIN
IMPORTING dashboard,
asm,
department_of_state_dashboard,
county_dashboard,
audit_board_dashboard

In order to relate the ASM to the core implementation constructs in a RESTful
client-server architecture, we must relate Ul events to ASM events and ASM
events to server endpoints. Communication to and from those endpoints hap-
pens via JSON streams over HTTPS. Thus, for any given endpoint, there is an
expected inbound JSON type and an expected outbound JSON type per HTTP
response code.

ui_event: TYPE = {
LOGIN,
FETCH_INITIAL_STATE_SEND,
FETCH_INITIAL_STATE_RECEIVE,
SELECT_NEXT_BALLQOT,
UPDATE_BOARD_MEMBER,
UPDATE_BALLOT_MARKS,
UNDEFINED

}

We specify the content of data sent to/from the server either with a specifica-
tion of a URL parameter-based communication or using a JSON object. We do
not wish to precisely specify the JSON, as encoding is non-unique due to the
existence of semantically equivalent encodings (as with any serialization tech-
nique) and across libraries. Instead, we specify data-in-transit implicitly via the
function signatures in the theories above that focus on the endpoint callback
(the various dashboard theories) and we name the semantically relevant fields
using a list of strings using the json_spec type.

json_spec: TYPE = list[string]

49

The nothing constant specifies that no content is transmitted for a given com-
munication with the server. This commonly happens, e.g., when performing a
GET on an endpoint.

nothing: json_spec = null

The server_response concept is the standard/normal response that the server
gives to all public inbound events to permit the Ul (the view of the MVC
architecture) to know what state the server is in, which UI elements should be
enabled (and thus what transitions are legal). We call this kind of behavior
in the server “normal behavior”. In all normal behavior cases the server will
answer with an HTTP response code of 0K_200.

server_response: json_spec =
(: "server_state", "ui_events" :)

The upload_response concept is used to encode the variety of response status
the server can give to an upload. Note that the upload_response type is used
as a response for both ballot manifest and CVR uploads. These responses can
happen synchronously (our plan for stage-1 deliverable) or asynchronously (our
plan for a later deliverable). Asynchronous updates happen via a call to the
refresh... endpoints.

upload_response: json_spec =

Legal values for status are: too_late, data_transmission_interrupted, upload -
sucessful, checking hash, hash wrong, hash_verified, parsing_data, file_-
type_wrong, and data_parsed.

(: "ballot_manifest-status", "cvr-status" :)

There are several possible cases where a client can make an inappropriate call
to the server. Our client will be guaranteed to never make such a call, but we
cannot presume that only our client will be communicating with the server, as
the server will be publicly accessible on the internet. We call these behaviors of
the server “exceptional behavior”. All responses to exceptional behavior come
in the form of HTTP client error (4xx) or server error (5xx) response codes.

http_response_code: TYPE = {
0K_200,
BAD_REQUEST_400,
UNAUTHORIZED_401,
FORBIDDEN_403,
NOT_FOUND_404,
UNSUPPORTED_MEDIA_TYPE_415,
UNPROCESSABLE_ENTITY_422,
INTERNAL_SERVER_ERROR_500

b

The cases that we must cover are:

50

1. The server is simply not up and running properly. For example, if the
database is not in a legal state. In these cases the server will answer with
an HTTP response code of INTERNAL_SERVER_ERROR_500.

2. In instances where the server is asked to query for a particular piece of
data from the database and that does does not exist, the server will re-
spond with a NOT_FOUND_404. This can happen, e.g., when a client uses
an improper encoding for a piece of data, such as a county ID that does
not, exist.

3. A piece of data uploaded by a client (at this point in time, either a bal-
lot manifest, a CVR file, or an Audit CVR) is malformed and cannot be
interpreted. This situation can happen, for example, if the Election Man-
agement System used to export the file has a bug, if the file is improperly
edited by someone, or if there is a bug in our parser. In this situation, the
server will respond with ab UNPROCESSABLE_ENTITY_422 response.

4. (This item is a potential future feature.) Alternatively, if the file is of the
wrong type (i.e., a PDF was uploaded when the server expected a CSV
file), or if the uploaded file is too large, then the server will respond with
a UNSUPPORTED_MEDIA_TYPE_415 message.

5. If the client is unauthenticated, or if authentication fails, then the server
will respond with a UNAUTHORIZED 401 response.

6. If some element of a request is incorrect then the server responds with
a BAD_REQUEST_400 message. In particular, if the digest uploaded with a
ballot manifest or a CVR file is incorrect, then the server will store the
data and respond with this message.

7. Finally, if the endpoint called is improper given the state that the server
is in—i.e., if calling the given endpoint implies an illegal state transition—
then the server will respond with a FORBIDDEN_403 message. This happens
only when an authenticated client tried to violate the state machine of
the server, and will either indicate a bug in our client code or malicious
or experimental behavior on the part of some non-official party.

http_inbound_spec: TYPE = list[string]
empty_request: http_inbound_spec = null

Transport specs for De-

artment of State Dash-
authenticate_params: http_inbound_spec = % reused for County Dash pard

oard. -kiniry
(: "username", "password", "second_factor" :)

risk_limit_params: http_inbound_spec =
(: "risk_limit" :)
select_contests_params: http_inbound_spec =
(: "contests" :)
random_seed_params: http_inbound_spec =

ol

(: "seed" :)

ballots_to_audit_params: http_inbound_spec =
(: "county" :)

full_hand_count_params: http_inbound_spec =
(: "contest" :)

published_audit_data: json_spec =
(: "TBD" :)

ballots_to_audit: json_spec =
(: "ballots" :)

final_state_audit_report: json_spec =

(: "audit_data", "county_audit_reports" :)
refresh_department_of_state_dashboard: json_spec =
(: "audit_stage", "risk_limit", "audited_contests",
"county_statuses", "seed", "full_hand_count_contests" :)

Transport specs for

County Dashboard. -
audit_board: http_inbound_spec =

kiniry
(: "firstname", "lastname", "party" :)
ballot_manifest_parts: http_inbound_spec =
(: "bmi_file", "county", "hash" :)
cvr_parts: http_inbound_spec =
(: "cvr_file", "county", "hash" :)
refresh_county_dashboard: json_spec =
(: "general_information", "audit_board_members",
"ballot_manifest_digest", "CVR_digest",
"contests_on_ballot", "contests_under_audit_with_reasons",
"date_and_time_of_audit", "estimated_number_of_ballots_to_audit",
"number_of_ballots_audited", "number_of_descrepencies",

"number_of_disagreements" :)

Transport specs for Audit

Board Dashboard. -kiniry
acvr_parts: http_inbound_spec =

(: "audit_cvr" :)
ballot_not_found_params: http_inbound_spec =
(: "ballot_id" :)
audit_investigation_report: json_spec =
(: "report" :)
audit_report: json_spec =
(: "reason" :)
refresh_audit_board_dashboard: json_spec =
(: "general_information", "contests_under_audit",
"county_status", "ballots_under_audit_with_locations",
"current_ballot_under_audit" :)

Discuss HTTP endpoint
types and endpoints. -
kiniry

92

endpoint_type: TYPE = { GET, POST, PUT }
server_endpoint: TYPE =
[# endpoint_type: endpoint_type,
callback: [dashboard -> dashboard],
uri: string,
implementation_class: string,
in_stream: http_inbound_spec,
out_stream: set[[http_response_code, json_specl],
dos_event: department_of_state_dashboard_event,
county_event: county_dashboard_event,
audit_event: audit_board_dashboard_event
#]
server_endpoints: TYPE = set[server_endpoint]
rla_tool_endpoints: VAR server_endpoints
undefined_callback: [dashboard -> dashboard]

Each RLA Tool system endpoint is specified below.

root_endpoint: server_endpoint = % DONE
(# endpoint_type := GET,
callback := undefined_callback,

uri := n/u’

implementation_class := "Root",

in_stream := empty_request,

out_stream := singleton((0K_200, nothing)),
dos_event := s_e,

county_event := n_e,

audit_event := n_e

#)

5.1 Department of State Dashboard Endpoints

auth_state_admin: server_endpoint = 7 DONE
(# endpoint_type := POST,
callback := undefined_callback,
uri := "/auth-state-admin",
implementation_class := "AuthenticateStateAdministrator",
in_stream := authenticate_params,
out_stream := add((UNAUTHORIZED_401, nothing),
singleton((0K_200, nothing))),

dos_event := asa_e,
county_event := n_e,
audit_event := n_e

#)
risk_limit: server_endpoint = % DONE
(# endpoint_type := POST,
callback := undefined_callback,

93

uri := "/risk-limit-comp-audits",
implementation_class := "EstablishRiskLimitForComparisonAudits",
in_stream := risk_limit_params,
out_stream := add((BAD_REQUEST_400, nothing),
add ((UNAUTHORIZED_401, nothing),
singleton((0K_200, nothing)))),

dos_event := erlfca_e,
county_event := n_e,
audit_event := n_e

#)

select_contests: server_endpoint = % DONE
(# endpoint_type := POST,
callback := undefined_callback,
uri := "/select-contests",
implementation_class := "SelectContestsForAudit",
in_stream := select_contests_params,
out_stream := add((BAD_REQUEST_400, nothing),
add ((UNAUTHORIZED_401, nothing),
singleton((0K_200, nothing)))),

dos_event := scfca_e,
county_event := n_e,
audit_event := n_e

#)

publish_data_to_audit: server_endpoint = 7 UNDERWAY
(# endpoint_type := POST,
callback := undefined_callback,
uri := "/publish-data-to-audit",
implementation_class := "PublishDataToAudit",
in_stream := empty_request,
out_stream := add((UNAUTHORIZED_401, nothing),
singleton((0K_200, published_audit_data))),

dos_event := pdta_e,

county_event := n_e,

audit_event := n_e
#)

publish_seed: server_endpoint = % DONE
(# endpoint_type := POST,
callback := undefined_callback,

uri := "/random-seed",
implementation_class := "UploadRandomSeed",
in_stream := random_seed_params,

out_stream := add((BAD_REQUEST_400, nothing),
add ((UNAUTHORIZED_401, nothing),
singleton((0K_200, nothing)))),
dos_event := ps_e,
county_event := n_e,

o4

audit_event := n_e

#)

publish_ballots: server_endpoint = % UNDERWAY

(# endpoint_type := GET,
callback := undefined_callback,
uri := "/ballots-to-audit",
implementation_class := "PublishBallotsToAudit",
in_stream := ballots_to_audit_params,
out_stream := add((UNAUTHORIZED_401, nothing),

singleton((0K_200, ballots_to_audit))),

dos_event := pbta_e,

county_event := n_e,

audit_event := n_e
#)

full_hand_count: server_endpoint = % UNDERWAY
(# endpoint_type := POST,
callback := undefined_callback,

uri := "/hand-count",
implementation_class := "IndicateHandCount",
in_stream := full_hand_count_params,

out_stream := add((BAD_REQUEST_400, nothing),
add ((UNAUTHORIZED_401, nothing),
singleton((0K_200, nothing)))),

dos_event := ifhcc_e,
county_event := n_e,
audit_event := n_e

#)

publish_report: server_endpoint = % UNDERWAY
(# endpoint_type := GET,
callback := undefined_callback,

uri := "/publish-report",
implementation_class := "PublishAuditReport",
in_stream := empty_request,

out_stream := add((UNAUTHORIZED_401, nothing),
singleton((0K_200, final_state_audit_report))),

dos_event := par_e,

county_event := n_e,

audit_event := n_e
#)

refresh_department_of_state_dashboard: server_endpoint = % DONE
(# endpoint_type := GET,
callback := undefined_callback,

uri := "/dos-dashboard",
implementation_class := "DoSDashboardRefresh",
in_stream := empty_request,

out_stream := add((UNAUTHORIZED_401, nothing),

99

singleton((0K_200, nothing))),

dos_event := r_e,

county_event := n_e,

audit_event := n_e
#)

5.2 County Dashboard Endpoints

auth_county_admin: server_endpoint = % DONE
(# endpoint_type := POST,
callback := undefined_callback,
uri := "/auth-county-admin",
implementation_class := "AuthenticateCountyAdministrator",
in_stream := authenticate_params,
out_stream := add((UNAUTHORIZED_401, nothing),
singleton((0K_200, nothing))),

dos_event := n_e,
county_event := aca_e,
audit_event := n_e

#)

establish_audit_board: server_endpoint = % UNDERWAY
(# endpoint_type := POST,
callback := undefined_callback,

uri := "/audit-board", % placeholder
implementation_class := "EstablishAuditBoard", % placeholder
in_stream := audit_board,

out_stream := add((UNAUTHORIZED_401, nothing),
singleton((0K_200, nothing))),

dos_event := n_e,
county_event := eab_e,
audit_event := n_e

#)

ballot_manifest_upload: server_endpoint = % DONE
(# endpoint_type := POST,

callback := undefined_callback,

uri := "/upload-ballot-manifest",

implementation_class := "BallotManifestUpload",

in_stream := empty_request,

out_stream := add((BAD_REQUEST_400, upload_response),
add ((UNAUTHORIZED_401, nothing),

singleton((0K_200, upload_response)))),

dos_event := n_e,
county_event := cuvbm_e,
audit_event := n_e

#)

cvr_export_upload: server_endpoint = % DONE

96

(# endpoint_type := POST,
callback := undefined_callback,

uri := "/upload-cvr-export",
implementation_class := "CVRExportUpload",
in_stream := cvr_parts,

out_stream := add((UNPROCESSABLE_ENTITY_422, upload_response),
add ((UNAUTHORIZED_401, nothing),
singleton((0K_200, upload_response)))),

dos_event := n_e,
county_event := uvc_e,
audit_event := n_e

#)

refresh_county_dashboard: server_endpoint = 7 DONE
(# endpoint_type := GET,
callback := undefined_callback,
uri := "/county-dashboard",
implementation_class := "CountyDashboardRefresh",
in_stream := empty_request,
out_stream := add((UNAUTHORIZED_401, nothing),
singleton((0K_200, refresh_county_dashboard))),

dos_event := n_e,

county_event := r_e,

audit_event := n_e
#)

5.3 Audit Board Dashboard Endpoints

acvr_upload: server_endpoint = % DONE
(# endpoint_type := POST,
callback := undefined_callback,
uri := "/upload-audit-cvr",
implementation_class := "ACVRUpload",
in_stream := acvr_parts,
out_stream := add((UNPROCESSABLE_ENTITY_422, upload_response),
add ((UNAUTHORIZED_401, nothing),
singleton((0K_200, nothing)))),

dos_event := n_e,

county_event := n_e,

audit_event := rm_e
#)

ballot_not_found: server_endpoint = j UNDERWAY
(# endpoint_type := POST,
callback := undefined_callback,
uri := "/ballot-not-found", % placeholder
implementation_class := "BallotNotFound", % placeholder
in_stream := ballot_not_found_params,

o7

out_stream := add((UNAUTHORIZED_401, nothing),
singleton((0K_200, nothing))),

dos_event := n_e,

county_event := n_e,

audit_event := rbnf_e
#)

audit_investigation_report: server_endpoint = 7 UNDERWAY
(# endpoint_type := POST,
callback := undefined_callback,
uri := "/audit-investigation-report", J placeholder
implementation_class := "AuditInvestigationReport", % placeholder
in_stream := audit_investigation_report,
out_stream := add((UNAUTHORIZED_401, nothing),
singleton((0K_200, nothing))),

dos_event := n_e,

county_event := n_e,

audit_event := sair_e
#)

intermediate_audit_report: server_endpoint = % UNDERWAY
(# endpoint_type := POST,
callback := undefined_callback, % signoff_intermediate_audit_report
uri := "/intermediate-audit-report", % placeholder
implementation_class := "IntermediateAuditReport", % placeholder
in_stream := audit_report,
out_stream := add((UNAUTHORIZED_401, nothing),
singleton((0K_200, nothing))),

dos_event := n_e,

county_event := n_e,

audit_event := siar_e
#)

audit_report: server_endpoint = % UNDERWAY
(# endpoint_type := POST,
callback := undefined_callback,

uri := "/audit-report", % placeholder
implementation_class := "AuditReport", J placeholder
in_stream := audit_report,

out_stream := add((UNAUTHORIZED_401, nothing),
singleton((0K_200, nothing))),

dos_event := n_e,

county_event := n_e,

audit_event := sar_e
#)

refresh_audit_board_dashboard: server_endpoint = % NOT STARTED
(# endpoint_type := GET,
callback := undefined_callback,
uri := "/audit-board-dashboard", % placeholder

98

implementation_class := "AuditBoardDashboard", % placeholder
in_stream := empty_request,
out_stream := add((UNAUTHORIZED_401, nothing),

singleton((0K_200, refresh_audit_board_dashboard))),

dos_event := n_e,

county_event := n_e,

audit_event := r_e
#)

Explain these relations

. . . and their use. -kiniry
ui_to_asm_event_relation: pred[[ui_event, asm_event]]

asm_event_to_endpoint_relation: pred[[asm_event, server_endpoint]]
END endpoints

6 Protocol

As discussed in Section [3.I]the RLA Tool is a client-server system. In this
section we describe the protocol used by the client and server to communicate
with each other.

protocol: THEORY
BEGIN
IMPORTING system_architecture,
system_architecture_component

The client-side of the system is exclusively a web browser running an HTML /Javascript-
based web application. Recall that in Section we mandated that all client
artifacts (static content, HTML, and Javascript) are provided directly from the

(web) server.

client: VAR front_end
browser: VAR web_browser

The server-side of the system is a web server which communicates over HTTPS.
It serves both static content, such as images and HTML fragments, and exe-
cutable content, such as Javascript code. As such, this is a standard REST-
based, multi-tier architecture.

To provide assurance about system availability, we deploy multiple instances
of web and application servers providing content and databases providing persis-
tent data storage. All of these artifacts are connected over multiple networks in
CDOS’s hosting service. We underspecify the details of the deployment network
configuration here at the request of CDOS.

99

server: VAR back_end

servers: VAR set[server]

web_server: VAR web_server
application_server: VAR application_server
networks: VAR set[network]

databases: VAR set[database]

Multiple databases run in a failover configuration. Web application servers
communicate with databases over a standard secure remote SQL connection.
Web servers serve static content and delegate dynamic content services to the
application servers.

All communication between the client web browsers and the server(s) is
initiated by the client, as with normal REST-based architectures. As such,
functions defined in the dashboards (Section[2.16)) of the system are the endpoint
of all communication in the system. The RLA Tool protocol is consequently the
union of all of those endpoints.

6.1 Department of State Dashboard Protocol

As discussed in Section the Department of State Dashboard has eight
(8) features: one for authentication, six for providing information about a given
election and RLA, and one for getting updates on the current RLA. Each feature
is encoded in a function in the department_of _state_dashboard module.

1. authenticate_state_administrator: authentication of state adminis-
trators (the mandatory first step in the protocol),

2. select_contests_for_comparison_audit: defining which contests will be
under audit using comparison audits,

3. publish_seed: the publication of the random seed for RLAs in the election
under audit,

4. establish risk limit for_comparison_audits: establishments of risk
limits for the election under audit,

5. public_ballots_to_audit: publishing the list of ballots to be audited for
each audited contest,

6. indicate_full_hand_count_contest: indicate that a contest must be a
full hand count contest, and

7. refresh: update the dashboard on the current state of the election and
its RLAs, including the status of all counties.

The first mandatory step in the protocol is authentication. All other features
can be used in any order, though typically, as mandated by the C.R.S., risk
limits are defined earlier than the selection of audited contests. Refreshes are

60

automatic and periodic, the periodicity of which will be determined via UX and
load testing.

Fach of these functions is a public feature of the system encoding what we
call a “public inbound event” to the RLA Tool’s servers. By examining one such
event in detail, we will elucidate how to read and understand its specification
and derive from it our network data model.

6.2 Drill-down Example of a Public Inbound Event

We will examine the function select_contests_for_comparison_audit in de-
tail in this section.

The first thing to note about this function is its type signature. The type
signature tells us what types of values it depends upon (on the lefthand side of
the arrow (“->") and what types of values it produces (on the righthand side).
The type signtuare of this function is

[department_of_state_dashboard, set[[contest, audit_reason]] ->
[department_of_state_dashboard, set[audited_contest]]]

As a consequence of the first type parameter mentioned in the signature,
this function operates on the Department of State Dashboard, thus is visible to
authenticated State administrators.

The second parameter states that the function expects to send a set of pairs
of contests and audit reasons to the server. By virtue of the fact these two
generic types (sets and pairs) are mentioned says that we must have a means by
which to encode those generic notions over the network. Because we are using
JSON as our general textual wire encoding format, we have a straightforward
means by which to encode such. The mention of the domain-specific types
contest and audit_reason mean that we must be able to encode values of
these types as well on the wire.

To encode a value of a given type on the wire (and, commensurately, store a
value in a database), one must be able to either or both encode its constituant
values on the wire or refer to a uniquely identified and encoded value that has
been previously defined. The type contest is defined as a record containing
strings and choices, the latter of which ends up being encoded as a set of options
which are strings. So, in the end, a contest value’s contents are nothing more
than a structured assembly of strings—a straightforward thing to encode.

The type audit_reason is simply an enumeration, thus can be encoded in
any number of ways. Commonly such structures are encoded by either string
representations of the enumeration’s values (such as “state_wide_contest” and
“county_wide_contest”, for example) or by using an encoding to natural num-
bers (e.g., 0 means state_wide_contest, etc.). The means of encoding enumer-
ations does not matter, so long as it is a full bijective encoding (encoding covers
all values and preserves all information and is reversible). We will discuss the
precise means by which we define data types and derive their JSON encodings
in 7?7 below.

61

The righthand side of the function’s type signature says that the dashboard
will be updated after the communication with the server completes (successfully
or not). If we have sufficient information about potential exceptional failure
cases for the function (e.g., we decide to deny the ability for state administra-
tors to call this function twice to update the contests to audit more than once, we
may need a response code to indicate such), then the codomain of the function
must indicate such. See, for example, county_upload verified ballot manifest.
(Add citation or explana-
tion of encoding of sets
and pairs. -kiniry

J

6.3 County Dashboard Protocol Had mEspeTEs Gogle o gl
external public events.

The County Dashboard has four (4) functions defined on it, all of which are pub- |-kiniry
lic external events: establish_audit_board, county_upload_verified ballot_m
upload_verified_cvrs, and upload_tabulation_results, the meaning and
use of each is clear from its definition.

6.4 Audit Board Dashboard Protocol

The Audit Board Dashboard has seven (7) functions defined on it, all of which
are pubic external events:

1. ballots_to_audit_to_storage_container_list, which is used to help
audit board members find the ballots that they must audit,

2. next_ballot_for_audit, which provides the ballot manifest information
necessary to inform the audit board members of the ballot style of the
pulled ballot as well as the CVR number of the ballot under audit,

3. report._markings, which permits the audit board members to report the
markings that they see on the current paper ballot under audit,

4. report_ballot_not_found, which permits the audit board members to
report that they cannot find the ballot that they are supposed to audit,

5. submit_audit_investigation_report, which permits the audit board mem-
bers to submit a report of an investigation into a given discrepancy in the
RLA process,

6. submit_audit_report, which permits the audit board members to submit
their final report on the RLA, and

7. submit_intermediate_audit_report, which permits the audit board mem-
bers to submit an intermediate report on the RLA so that they can, e.g.,
take a break and return to the audit process later.

END protocol

62

7 Domain Model

The overall domain model and specification of this system is the sum total of
all concepts introduced in this chapter.

specification_theories: THEORY
BEGIN
IMPORTING
FAFSSL
END specification_theories

background_terminology: THEORY
BEGIN
IMPORTING
database,
information_systems,
randomness,
cryptography
END background_terminology

terminology: THEORY
BEGIN
IMPORTING

audits,
authentication,
ballot_interpretation,
ballot_manifests,
ballots,
ballots_collections,
canvass_boards,
cast_vote_records,
elections,
elections_equipment,
instructions_forms_reports,
rlas,
roles

END terminology

dashboards: THEORY
BEGIN
IMPORTING

dashboard,
department_of_state_dashboard,
county_dashboard,
audit_board_dashboard,
public_dashboard

63

END dashboards

system_specification: THEORY
BEGIN
IMPORTING
data_model,
logging,
protocol,
system_architecture,
system_assumptions

END system_specification

corla: THEORY
BEGIN
IMPORTING

specification_theories,
background_terminology,
terminology,
dashboards,
system_specification

END corla

64

Todo list

Add annotation functions coupled to milestones. -kiniry| 6

Need to break the cycle between the contest type and the ballots
theory. sfsinger suggests: contests are grouped into elections, not

ballots. So define contests first. Then a ballot is created to represent |

a set of contests. -kiniry| L oo oL 8
Add an axiom for contest name uniqueness. -kiniry|. 9
These types will be refined when we review the information provided |

by CDOS on 20 July 2017 about Dominion’s file formats. -kiniry] . . 9
Revise this definition. -kiniry| 9
Find sources for these, other than “Dwight Shellman said so” -sfsinger| 11
Add an axiom for uniqueness of scanner id numbers. -kiniry|. 11
Need to clarify choices vs options vs votes. -kiniry| 13
Need to add model information for write-in votes. -kiniry| 13
Should this information also include what kind of ballot each ballot |

187 l.e., reemarked, phantom, etc.” -kiniry| 14
These types will be refined when we review the information provided |

by CDOS on 20 July 2017 about Dominion’s file formats. -kiniry] . . 14
Ballot position number is still not explicitly specified. -kiniry| 14
Should we define undervote specifically as 0 votes? -nealmcb| 15

Should we model a blank vote separately from an undervote? Or do |
they simply use the term blank vote to denote an undervote? -kiniry|] 15
Introduce appropriate axiom for such. -kiniry| 15

Still need to model core RLA algorithm(s). -kiniry| 23

For a given election, we cannot expect a 1-1 correspondence between
1ts ballots and 1ts CVRs. Phantom ballots and human error will

result in a violation of such a property. -kiniry| 23
It is unclear what a CVR number is, if anything. -kiniry|. 24

In the audit adjudication interface, it must be possible to classify
a ballot as unauditable either due to not finding a voter-verifiable

paper record or due to it being a phantom ballot. -kiniry| 24
Obviously this type has to be strengthened considerably to guarantee

permutation. That is, that both the set and the list are finite and

converting the list into a set results in a set equivalent to the original

set. -kiniry|o 29
[[Whrite a specification for publishing data to audit. -kiniry| ... L 29
Improve/strengthen the dependent types in these upload signatures |
below. -kiniry|. 31
@review cdos Must the Department of State give an explicit go-ahead, |
or can the county simply immediately start the audit? -kiniry[. . . . 31
Introduce an authentication monad and a state monad for our ASMs. |
-Kinary] ..o 36
Add election as first column to every table? Or have a different DB |
per election? -kiniry| 44
Explain ASM definition. -kiniry|[. 45

Discuss upload_system_message. -kiniry| 46

Transport specs for Department of State Dashboard. -kiniry|. 51
Transport specs for County Dashboard. -kiniry| 52
Transport specs for Audit Board Dashboard. -kiniry| 52
Discuss HTTP endpoint types and endpoints. -kiniry|. 52
Explain these relations and their use. -kiniry| 59
Add citation or explanation of encoding of sets and pairs. -kiniry| . . . 62
Add response code for all external public events. -kiniry| 62
H Explan how we are doing the definition of data types and the derivation

of JSON encodings. -dmz{ 62

66

	Introduction
	Colorado Statues and Rules
	Technical Context

	Formal Model Description
	Basic Technical Infrastructure
	Kinds of Concepts
	Refinement from Background Literature to Specification
	Refinement from Specification to Implementation
	Elections
	Ballots
	Ballot Manifests
	Instructions, Forms, and Reports
	Roles
	Cryptography
	Randomness
	Audits
	Colorado RLAs
	Cast Vote Records
	User Interfaces
	Dashboards
	Department of State Dashboard
	County Dashboard
	Audit Board Dashboard
	Public Dashboard

	Authentication

	Computer System
	System Architecture
	System Assumptions
	System Logging
	Data Model

	Abstract State Machine
	Endpoints
	Department of State Dashboard Endpoints
	County Dashboard Endpoints
	Audit Board Dashboard Endpoints

	Protocol
	Department of State Dashboard Protocol
	Drill-down Example of a Public Inbound Event
	County Dashboard Protocol
	Audit Board Dashboard Protocol

	Domain Model

