Algorithmic Techniques for Necessary and Possible Winners

VISHAL CHAKRABORTY, University of California Santa Cruz, USA

THEO DELEMAZURE, Ecole Normale Superieure, France

BENNY KIMELFELD, Technion - Israel Institute of Technology, Israel

PHOKION G. KOLAITIS, University of California Santa Cruz and IBM Research, USA
KUNAL RELIA, New York University, USA

JULIA STOYANOVICH, New York University, USA

We investigate the practical aspects of computing the necessary and possible winners in elections over in-
complete voter preferences. In the case of the necessary winners, we show how to implement and accelerate
the polynomial-time algorithm of Xia and Conitzer. In the case of the possible winners, where the problem
is NP-hard, we give a natural reduction to Integer Linear Programming (ILP) for all positional scoring rules
and implement it in a leading commercial optimization solver. Further, we devise optimization techniques
to minimize the number of ILP executions and, oftentimes, avoid them altogether. We conduct a thorough
experimental study that includes the construction of a rich benchmark of election data based on real and syn-
thetic data. Our findings suggest that, the worst-case intractability of the possible winners notwithstanding,
the algorithmic techniques presented here scale well and can be used to compute the possible winners in
realistic scenarios.

CCS Concepts: « Theory of computation — Algorithm design techniques; Theory and algorithms for
application domains; « Mathematics of computing — Solvers;

Additional Key Words and Phrases: Computational social choice, elections, partial preferences, integer linear
programming, poset generation methods

ACM Reference format:

Vishal Chakraborty, Theo Delemazure, Benny Kimelfeld, Phokion G. Kolaitis, Kunal Relia, and Julia Stoy-
anovich. 2021. Algorithmic Techniques for Necessary and Possible Winners. ACM/IMS Trans. Data Sci. 2, 3,
Article 22 (July 2021), 23 pages.

https://doi.org/10.1145/3458472

This work was supported in part by National Science Foundation (NSF) Grants No. 1814152 and 1916647, and by US-Israel
Binational Science Foundation (BSF) 201775.

Authors’ addresses: V. Chakraborty, Computer Science and Engineering Department, Jack Baskin School of Engineering,
University of California Santa Cruz, Santa Cruz, CA 95064, USA; email: vchakrab@ucsc.edu; T. Delemazure, Ecole Normale
Superieure, 45, Rue d’Ulm, 75005 PARIS, France; email: theo.delemazure@ens.fr; B. Kimelfeld, The Henry and Marilyn Taub
Faculty of Computer Science, Technion, Haifa 3200003, Israel; email: bennyk@cs.technion.ac.il; P. G. Kolaitis, Computer
Science and Engineering Department, Jack Baskin School of Engineering, University of California Santa Cruz, Santa Cruz,
CA 95064, USA; email: kolaitis@ucsc.edu; K. Relia, Computer Science and Engineering Department, Tandon School of
Engineering, New York University, 370 Jay Street, Brooklyn, NY 11201, USA; email: krelia@nyu.edu; J. Stoyanovich, Center
for Data Science, New York University, 60 5th Avenue, New York, NY 10011, USA; email: stoyanovich@nyu.edu.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2021 Association for Computing Machinery.

2577-3224/2021/07-ART22 $15.00

https://doi.org/10.1145/3458472

ACM/IMS Transactions on Data Science, Vol. 2, No. 3, Article 22. Publication date: July 2021.

https://doi.org/10.1145/3458472
mailto:permissions@acm.org
https://doi.org/10.1145/3458472

22:2 V. Chakraborty et al.

1 INTRODUCTION

The theory of social choice focuses on the question of how preferences of individuals can be ag-
gregated in such a way that the society arrives at a collective decision. It has been of interest
throughout the history of humankind, from the analysis of election manipulation by Pliny the
Younger in Ancient Rome to the 18th-century studies of voting rules by Jean-Charles de Borda
and Marquis de Condorcet, and the more recent ground-breaking work on dictatorial vote aggre-
gation by Kenneth Arrow in the 1950s. Over the past two decades, computational social choice has
been developing as an interdisciplinary area between social choice theory, economics, and com-
puter science, where the central topics of study are the computational and algorithmic perspectives
of voting challenges such as vote aggregation [6].

A voting rule determines how the collection of voter preferences over a set of candidates is
mapped to the set of winning candidates (the winners). Among the most extensively studied is the
class of positional scoring rules, where every candidate receives a score from every voter that is
determined only by the position of the candidate in the voter’s ranking. A candidate wins if he or
she achieves the highest total score—the sum of scores it receives from each voter.

A particularly challenging computational aspect arises in situations in which voter preferences
are only partial (i.e., they can be modeled as partial orders). This might happen since, for example,
voters may be undecided about some candidates or, simply, only partial knowledge of the voter’s
preference is available (e.g., knowledge is inferred indirectly from opinions on issues). The problem
already manifests itself at the semantic level: what is the meaning of vote aggregation in the pres-
ence of incompleteness, if voting rules require complete knowledge? For this reason, Konczak and
Lang [15] introduced the notions of necessary winners and possible winners as the candidates who
win in every completion, and, respectively, at least one completion of the given partial preferences.

This work led to a classification of the computational complexity of the necessary and possible
winners for a large variety of voting rules 2, 3, 20]. Specifically, under (efficiently computable) posi-
tional scoring rules, the necessary winners can be computed in polynomial time via the algorithm
of Xia and Conitzer [20]. The possible winners can be computed in polynomial time under the
plurality and veto rules, but their computation is NP-hard for every other pure rule, as established
in a sequence of studies [2, 3, 15, 20]. Here, pure means that the scoring vector for m candidates is
obtained from that for m — 1 candidates by inserting a new score into the vector.

In this article, we explore the practical aspects of computing the necessary and possible win-
ners. Specifically, we investigate the empirical feasibility of this challenge, develop algorithmic
techniques to accelerate and scale the execution, and conduct a thorough experimental evaluation
of our techniques. For the necessary winners, we show how to accelerate the Xia and Conitzer
algorithm through mechanisms of early pruning and early termination. For the possible winners,
we focus on positional scoring rules for which the problem is NP-hard. We first give a natural
polynomial-time reduction of the possible winners to Integer Linear Programming (ILP) for
all positional scoring rules. Note that ILP has been used in earlier research on the complexity of
voting problems as a theoretical technique for proving upper bounds (fixed-parameter tractabil-
ity) in the parameterized complexity of the possible winners [4, 14, 21] or in election manipula-
tion problems involving complete preferences [17]. Here, we investigate the use of ILP solvers to
compute the possible winners in practice. Our experiments on a leading commercial ILP solver
(Gurobi v8.1.1) show that the reduction produces ILP programs that are often too large to load and
too slow to solve. For this reason, we develop several techniques to minimize or often eliminate
ILP computations and, when the use of ILP is unavoidable, to considerably reduce the size of the
ILP programs.

We conduct an extensive experimental study that includes the construction of a rich benchmark
of election data based on both real and synthetic data. Our experimental findings suggest that,

ACM/IMS Transactions on Data Science, Vol. 2, No. 3, Article 22. Publication date: July 2021.

Algorithmic Techniques for Necessary and Possible Winners 22:3

the worst-case intractability of the possible winners notwithstanding, the algorithmic techniques
presented here scale well and can be used to compute the possible winners in realistic scenarios.
An important contribution of our work that is of independent interest is a novel generative model
for partially ordered sets, called the Repeated Selection Model (RSM). We believe that RSM may
find uses in other experimental studies in computational social choice.

2 PRELIMINARIES AND EARLIER WORK

Voting profiles. Let C = {c1,c2,¢3,...,cm} be a set of candidates and let V = {vy,...,v,} be a
set of voters. A (complete) voting profile is a tuple T = (Ty, ..., T,) of total orders of C, where each
T; represents the ranking (preference) of voter v; on the candidates in C. Formally, each T; is a
binary relation >7, on C that is irreflexive (i.e., ¢; #7, c;, for all i), antisymmetric (ie., ¢; >7, ¢;
implies ¢; #7, ¢;, for all i # j), transitive (i.e., ¢; >7, ¢; and ¢; >, i imply ¢; >71, ¢k, for all i, j, k),
and total (ie., ¢c; >7, ¢j or ¢; >7, ¢; holds for all i # j). Similarly, a partial voting profile is a tuple
P = (Py,...,P,) of partial orders on C, where each P; represents the partial preferences of voter v;
on the candidates in C; formally, each P; is a binary relation on C that is irreflexive, antisymmetric,
and transitive (but not necessarily total). A completion of a partial voting profile P = (Py, ..., Py)
is a complete voting profile T = (T3, ..., T,) such that each T; is a completion of the partial order
Py; that is to say, T; is a total order that extends P;. Note that, in general, a partial voting profile
may have exponentially many completions.

Voting rules. We focus on positional scoring rules, a widely studied class of voting rules. A po-

sitional scoring rule r on a set of m candidates is specified by a scoring vector s = (s1,...,5m)
of non-negative integers, called the score values, such that s; > s, > --- > s,,. Suppose that
T = (Ty,...,Ty) is a total voting profile. The score s(T}, c) of a candidate ¢ on T; is the value s,

where k is the position of candidate ¢ in T;. The score of ¢ under the positional scoring rule r on
the total profile T is the sum)} | s(Tj,c). A candidate c is a winner if ¢’s score is greater than or
equal to the scores of all other candidates; similarly, c is a unique winner if ¢’s score is greater than
the scores of all other candidates. The set of all winners is denoted by W(r, T).

We consider positional scoring rules that are defined for every number m of candidates. Thus, a
positional scoring rule is an infinite sequence si, S, . . ., S, . . . Of scoring vectors such that each s,
is a scoring vector of length m. Alternatively, a positional scoring rule is a function r that takes as
argument a pair (m, s) of positive integers with s < m and returns as value a non-negative integer
r(m,s) such that r(m, 1) > r(m,2) ... > r(m, m). We assume that the function r is computable in
time polynomial in m, and hence the winners can be computed in polynomial time. Such a rule is
pure if the scoring vector s,,41 of length (m + 1) is obtained from the scoring vector s,, of length
m by inserting a score in some position of s,,, provided that the decreasing order of score values
is maintained.

As examples, the plurality rule is given by scoring vectors of the form (1,0,...,0), while the
veto rule is given by scoring vectors of the form (1, 1, . .., 1,0). The plurality rule is the special case
t = 1 of the t-approval rule, in which the scoring vectors start with ¢ ones and then are followed by
zeros. In particular, the 2-approval rule has scoring vectors of the form (1, 1,0, ...,0). The Borda
rule, also known as the Borda count, is given by scoring vectors of the form (m - 1,m —2,...,0).

Necessary and possible winners. Let r be a voting rule and P a partial voting profile.

e The set NW(r, P) of the necessary winners with respect to r and P is the intersection of the
sets W(r, T), where T varies over all completions of P. Thus, a candidate ¢ is a necessary
winner with respect to r and P, if ¢ is a winner in W(r, T) for every completion T of P.

ACM/IMS Transactions on Data Science, Vol. 2, No. 3, Article 22. Publication date: July 2021.

22:4 V. Chakraborty et al.

e The set PW(r,P) of the possible winners with respect to r and P is the union of the sets
W(r,T), where T varies over all completions of P. Thus, a candidate c is a possible winner
with respect to r and P, if ¢ is a winner in W(r, T) for at least one completion T of P.

The notions of necessary unique winners and possible unique winners are defined in an analogous
manner. The preceding notions were introduced by Konczak and Lang [15]. Through a sequence
of subsequent investigations by Xia and Conitzer [20], Betzler and Dorn [3], and Baumeister and
Rothe [2], the following classification of the complexity of the necessary and the possible winners
for all pure positional scoring rules was established.

THEOREM 2.1 (CLASSIFICATION THEOREM). The following statements hold:

e Ifr is a pure positional scoring rule, there is a polynomial-time algorithm that, given a partial
voting profile P, returns the set NW (r, P) of necessary winners.

o Ifr isthe plurality rule or the veto rule, there is a polynomial-time algorithm that, given a partial
voting profile P, returns the set PW (r, P) of possible winners. For all other pure positional scoring
rules, the following problem is NP-complete: given a partial voting profile P and a candidate c,
is ¢ a possible winner w.r.t. r and P?

Furthermore, the same classification holds for necessary unique winners and possible unique winners.

In the preceding theorem, the input partial voting profiles consist of arbitrary partial orders.
There has been a growing body of work concerning the complexity of the possible winners when
the partial voting profiles are restricted to special types of partial orders. The main motivation for
pursuing this line of investigation is to determine whether or not the complexity of the possible
winners drops from NP-complete to polynomial time w.r.t. some scoring rules (other than plurality
and veto), if the input voting profiles consist of restricted partial orders that also arise naturally in
real-life settings. We now describe two types of restricted partial orders and state relevant results.

Definition 2.2. Let > be a partial order on a set C.

e We say that > is a partitioned preference if C can be partitioned into disjoint subsets
A1, ..., Aq so that the following hold:
(a)foralli <j<gq,ifce Ajand ¢’ € Aj, thenc > ¢;
(b) for each i < g, the elements in A; are incomparable under >; that is to say, a ¥ b and
b # ahold, forall a,b € A;.

e We say that > is a partial chain if it consists of a linear order on a non-empty subset C” of C.

Partitioned preferences relax the notion of a total order by requiring that there is a total or-
der between sets of incomparable elements. As pointed out by Kenig [12], partitioned preferences
“were shown to be common in many real-life datasets, and have been used for learning statistical
models on full and partial rankings” Furthermore, partitioned preferences contain doubly trun-
cated ballots (DTBs) as a special case, where there is a complete ranking of top elements and a
complete ranking of bottom elements, and all remaining elements between the top and the bot-
tom elements are pairwise incomparable. This models, for example, the setting in which a voter
has complete rankings of some top candidates and of some bottom candidates but is indifferent
about the remaining candidates in the “middle” DTBs contain top-truncated ballots (TTBs) and
bottom-truncated ballots (BTBs) as special cases. As the names suggest, in a top-truncated ballot
(respectively, bottom-truncated ballot), a complete ranking of top (respectively, bottom) elements
is provided, while all remaining elements are pairwise incomparable.

Partial chains arise in settings where there is a large number of candidates but a voter has
knowledge of only a subset of them. For example, a voter may have a complete ranking of movies
that the voter has seen but, of course, does not know how to compare these movies with movies

ACM/IMS Transactions on Data Science, Vol. 2, No. 3, Article 22. Publication date: July 2021.

Algorithmic Techniques for Necessary and Possible Winners 22:5

Fig. 1. A partial order, where x — y denotes x >p y.

that the voter has not seen. Partial chains also model the setting of an election in which one or more
candidates enter the race late, and so a voter has a complete ranking of the original candidates but
does not know yet how to rank the new candidates who entered the race late.

Let r be a pure positional scoring rule. We write PW-PP(r) to denote the restriction of the pos-
sible winners problem w.r.t. r to partial voting profiles consisting of partitioned preferences. More
formally, PW-PP(r) is the following decision problem: given a partial voting profile P consisting of
partitioned preferences and a candidate c, is ¢ a possible winner w.r.t. r and P? Similarly, we write
PW-PC(r) to denote for the restriction of the possible winners problem w.r.t. r to partial voting
profiles consisting of partial chains.

Kenig [12] established a nearly complete classification of the complexity of the PW-PP(r) prob-
lem for pure positional scoring rules. In particular, if r is the 2-approval rule, then PW-PP(r) is
solvable in polynomial time. In fact, the tractability of PW-PP(r) holds for all 2-valued rules, that
is, positional scoring rules in which the scoring vectors contain just two distinct values. If r is
the Borda rule, however, then PW-PP(r) is NP-complete. In fact, results in [1, 5, 8] imply that
the possible winners problem w.r.t. the Borda rule is NP-complete, even when restricted to input
partial voting profiles consisting of top-truncated ballots; therefore, the possible winners problem
w.r.t. the Borda rule is NP-complete, when restricted to doubly truncated ballots. As regards partial
chains, it was shown recently in [7] that the classification in Theorem 2.1 does not change for the
PW-PC(r) problem. In other words, for every positional scoring rule r other than plurality and
veto, PW-PC(r) is NP-complete. In particular, PW-PC(r) is NP-complete if r is the 2-approval rule
or the Borda rule.

Our experimental evaluation will focus on the plurality rule, the 2-approval rule, and the Borda
rule. For this reason, we summarize the aforementioned complexity results concerning these rules
in the following table (also listing the veto rule for completeness).

3 NECESSARY WINNERS

Xia and Conitzer [20] presented a polynomial-time algorithm for determining whether a particular
candidate c is a necessary winner (NW) in an election that uses a positional scoring rule r, that
is, whether ¢ € NW(r, P). We recall it in Algorithm 1. We will then present several performance
optimizations that allow us to efficiently compute the set NW (r, P) of necessary winners.

For a partial order P € P and a candidate ¢ € C, we let Upp(c) = {¢’ € C|¢’ =p c} and
Downp(c) = {c¢’ € C|¢’ <p c}. (Note that both Upp(c) and DownNp(c) include c.) Further, for a pair
of candidates ¢ and w with ¢ >p w, we write BLockp(c, w) = DowNp(c) N Upp(w) for the set of
candidates ranked between ¢ and w, including ¢ and w.

Example 3.1. Consider the partial order depicted in Figure 1. If we put ¢ = z, then Upp(c) = {x, z}
and DowNp(c) = {z, t,u, v}. Next, if we put w = v, then Upp(w) = {x,y, 2, t,u, v} and Downp(w)
= {v}. Thus, BLockp(c, w) = DowNp(c) N Urp(w) = {z, t,u, v}.

Note that Algorithm 1 returns true if ¢ is a necessary winner, not only if it’s a necessary unique
winner. To return true only if c is the necessary unique winner, line 20 should be replaced by

S(w) = S(c).
ACM/IMS Transactions on Data Science, Vol. 2, No. 3, Article 22. Publication date: July 2021.

22:6 V. Chakraborty et al.

ALGORITHM 1: checkNW(c, P, r)

1: for each partial order P € P do

2. for each candidate ¢’ € C do

3 compute Upp(c’) and Downp(c’)
4 end for

5. end for
6
7
8
9

: for eachw € C\ cdo
Initialize S(w) = S(c) = 0
for each partial order P € P do
if ¢ #p wthen

10: pos. = (m — [Downp(c)| + 1) is the lowest possible position for ¢

11: pos,, = [Upp(w)]| is the highest possible position for w

12: S(c) = S(c) + r(m, pos.)

13: S(w) = S(w) + r(m, pos,,)

14: else if ¢ >p w then

15: slide Brockp(c,w) between positions [Upp(w)\Downp(c)] + 1 and
m — |Downp(c) \ Upp(w)|, find positions pos. and pos, that minimize
r(m’POSc) - r(m’POSw)

16: S(c) = S(c) + r(m,pos.)

17: S(w) = S(w) + r(m, pos,,)

18: end if

19: end for
20. if S(w) > S(c) then

21: ¢ is not a necessary winner, return false
22: end if
23: end for

24: ¢ is a necessary winner, return true

We now present several performance optimizations that allow us to efficiently compute the set
NW(r,P) of necessary winners. Our optimizations are of two kinds. The first kind is based on
reusing computation across candidates and on heuristically re-ordering computation. The second
kind uses the structure of a given partial voting profile to optimize the computation of Upp(c) and
DownNp(c).

Reusing and reordering computation. A straightforward way to use Algorithm 1 to compute
NW(r, P) is to execute it m times, once for each candidate.

To eliminate redundant computation, we first compute and record the Upp(c) and DowNp(c) of
each P and c once. We will explain how to compute Upp(c) and Downp(c) efficiently later in this
section.

Additionally, we compute and record the best possible score Spax(c) = X pep r(m, |Upp(c)|) of
each candidate. If a candidate ¢; ¢ argmax_ Sy,qx(c), then that candidate is pruned as he or she
cannot be a necessary winner. Indeed, for some ¢, € argmax_ Sp,qx(c), there is by definition a
completion in which ¢, obtains a score of Sy, (c2). Since Syax(c2) > Smax(c1), the score of ¢; in
this completion is less than the score of ¢;, and ¢; is not a winner. Hence, c¢; is not a necessary
winner.

Next, we execute competitions between pairs of candidates ¢ and w, deliberately selecting
only the promising candidates as ¢, and prioritizing strong opponents w. Specifically, only the

ACM/IMS Transactions on Data Science, Vol. 2, No. 3, Article 22. Publication date: July 2021.

Algorithmic Techniques for Necessary and Possible Winners 22:7

candidates that have the highest S,,,x(c) can become necessary winners. Further, we sort poten-
tial opponents in decreasing order of S,,,x (W), because higher-scoring opponents are more likely
to defeat c.

Computing Upp(c) and Downp(c). This part of the computation takes polynomial time, but the
details of this computation are left unspecified by Xia and Conitzer. In our implementation, we use
a breadth-first search (BFS) algorithm to compute these sets for all candidates of a given partial
profile P, maintaining intermediate results in a priority queue.

We also observe that the structure of P can be used to make this computation more efficient in
some common cases. In particular, Upp(c) and DownNp(c) can be computed in O(m) time for partial
chains (recall that a partial chain is a partial order on a set C that consists of a linear order on a non-
empty subset of C) and for partitioned preferences, where candidates are partitioned into ¢ sets C =
A1U---UAg, and where P provides a complete order over the sets but does not compare candidates
within a set. A common example of partitioned preferences are top-k preferences, where the first k
sets are of size 1, and the final set is of size m—k. Alternatively, Upp(c) and DowNp(c) computation
can be avoided altogether in these cases, since the scores of S(c) and S(w) that minimize S(c) —
S(w) can be determined directly. For example, consider a partial profile P that stores partitioned
preferences, and suppose that ¢ € A; and w € A;. To minimize S(c) — S(w), we assign c to the
worst position in partition A;, and we assign w to the best position in partition A;.

In summary, while the optimizations described in this section do not reduce the asymptotic run-
ning time of the already polynomial NW(r,P) computation in the general case, they are useful
in practice, as we will demonstrate experimentally in Section 6.3. As we explain in the next sec-
tion, we use these and similar techniques to optimize the performance of PW(r, P), making this
computation practically feasible.

4 POSSIBLE WINNERS
4.1 Computing PW for Plurality and Veto

By Theorem 2.1, for Plurality and Veto, there are polynomial-time algorithms for telling if a given
candidate is a possible winner. In fact, Betzler and Dorn [3] gave such an algorithm for plurality
by efficiently transforming the detection of possible winners to a network flow problem with just
two layers and with integral capacities along the edges of the network. We have implemented and
optimized this algorithm by, among other things, eliminating obvious winners (candidates ranked
first in over half of the partial orders in P) and obvious losers (candidates ranked first in fewer than
1/m partial orders), thus reducing the size of the network. A variant of this algorithm can be used
to detect possible winners for veto.

4.2 Reducing PW to ILP

Again by Theorem 2.1, for all positional scoring rules other than plurality and veto, detecting
possible winners is an NP-complete problem. Here, we give a polynomial-time reduction of the
Possible Winners problem to ILP and, in fact, to 0-1 ILP. Let r be a positional scoring rule and let
s = (s1,...,Sm) be its scoring vector for m candidates. Consider an input to the possible winners
problem consisting of a set C = {cy, . .., ¢} of candidates, a partial voting profile P = (P4, ..., Py),
and a distinguished candidate c,, from C; the question is whether or not c,, € PW(r, P).

e For each [with 1 < I < n and each i with 1 < i < m, introduce m binary variables

xi’i, xé’i, xé’i, o, xf;li. Intuitively, we want to have le.’i = 1 if candidate ¢; has rank j in a

completion T; of P;; otherwise, le.’i = 0. Thus, the rank of ¢; in T; is equal to Z;"zlp . x]l;i.

ACM/IMS Transactions on Data Science, Vol. 2, No. 3, Article 22. Publication date: July 2021.

22:8 V. Chakraborty et al.

e There are two constraints to ensure the validity of a completion T; of P;; namely, each can-
didate is assigned exactly one rank in T;, and no two candidates are assigned the same rank

il’lT[:
m
ijl;l=1,Where1£l£nand1£i£m (1)
p=1
Zx}l,’izl,wherelSlSnandlSpSm. (2)
cieC

e If a candidate c; is ranked higher than a candidate c; in the partial order P;, then c; has to
also be ranked higher in a completion T; of P;. This is ensured by introducing the following
constraint for each such pair of candidates and each partial order:

m m

Lj Li
E pxy’ > E pxy. (3)
p=1 p=1

e Finally, to ensure that the distinguished candidate c,, is a possible winner, we add, for each
candidate c¢; # c,,, the following constraint:

n m n m
l,i IL,w

DIPICEVIED 3 JORES @

=1 p=1 =1 p=1

Let ¥ be the preceding ILP instance. Note that ¥ has O(m?n) binary variables and O(m?n) con-
straints.

Note also that for the case of possible unique winners, one has s(T,¢;) < s(T,c,). Thus, the
only change needed is to replace the inequality in Equation (4) by a strict one.

We want to show that a 0-1 solution to ¥ exists if and only if candidate c,, is a possible winner.
In what follows, for a set C, we let II(C) denote the set of all total orders on C. We also let 7 :
II(C) x C — [1, ..., m] be the ranking function that returns the rank of ¢’ € C in a total order on
C.

THEOREM 4.1. The following statements are equivalent:

L Candidate c,, is a possible winner w.r.t. the rule r and the partial profile P.
II. The system X has a 0-1 solution.

Proor. We list four easily provable facts that will be used in the proof of the theorem. Let
C={cy,...,cyyand P = {Py,..., P,} be a set of partial votes.

Fact 1. For each partial vote Py, let T} € II(C) be a total order that extends P;. Put

i {1, if 1(Pr,c;) =p ()

Li
P 0, otherwise.
The values ai;i,l <i<m,1 < p < mhave the following properties:

Li_ .
° Z;;n=1 a; = 1; _
e forp=1,...,m, we have that 3,7, a;;l =1.

Fact 2. Suppose bjl;i 1<i<n,1<p<marenon-negative integers such that

ACM/IMS Transactions on Data Science, Vol. 2, No. 3, Article 22. Publication date: July 2021.

Algorithmic Techniques for Necessary and Possible Winners 22:9

o byl e 0,1}
A
° Z;;nlbpl =1
° forp—1,...,m,wehave2f1bil)’ =

Let 7 : II(C) X C — [1,...,m] such that 7 (T}, ¢;) = k; if and only if b]lc’_i = 1. This induces a total
order on C.

Fact 3. Let P; be a partial order on C and T; be a total order on C. Suppose that we have values
p " as defined as in Equation (5). For all ¢; > ¢; in P, the inequalities Zp 1 p(ay ahi - l’i) > 0 hold
if and only if P; — Tj.

Fact 4. Consider a profile T = (T, . .., T,) and the scoring vector s = (sq,...,Sm). Note that the
total score of a candidate ¢; € Ciis 3, s(Tj,¢i) = X, X702 Sp - a;, .
Let c,, be a fixed candidate. Then the following statements are equivalent:

e ¢,, is a winner in T using the scoring rule s = (s1,...,8m).
e For every candidate ¢; # c,,, we have that

n m
IR DI
I1=1 p=1

We are now ready to proceed Wlth the proof of the theorem.
(I = 1I) Assume that a partial order P = {Py,...,P,} — T = {T3,...,T,} such that c,, is a
possible winner. Set

i {1, if m(Ty,ci) =p (6)

P 0, otherwise.

We claim that the assignment x}l;i = ai,’i satisfies all the equations of the system .
Indeed, from Fact 1, we know that this assignment satisfies the following:

(1) X e =1

(2) forp=1,...,m, we have 3,7 a"’

llpzl.

Since P < T, by definition, P; < T;. By Fact 3, the constraints)" e 1p(Lji_ l’i) > 0 are satisfied.

Since c,, is a possible winner in P, by Fact 4, the constraints, one for each c; €C\{cwl},

are satisfied.
I = I) Assume that the system X has the integer solutlona ‘A<l<ni1<i<mi1<p<m).

Each ap is either 0 or 1 by the first group of constraints. Furthermore, by Fact 2, the constraints (1)
and (2) ensure that each vote induces a total order >; on C. Furthermore, the total order T; extends
P; because of the constraints Z;“zl p(a;,’j - ai;i) > 0. Finally, since the constraints in Equation (4)
are satisfied, Fact 4 implies that c,, is a possible winner. O

4.3 Checking a Possible Winner

Determining whether or not ¢,, € PW(r,P) using our methodology involves the following two
main steps:

ACM/IMS Transactions on Data Science, Vol. 2, No. 3, Article 22. Publication date: July 2021.

22:10 V. Chakraborty et al.

(1) Construct the ILP model. Constraints (1) and (2) depend only on m and n, whereas constraints
(3) and (4) depend additionally on c,, and on the partial profile.
(2) Solve the ILP model.

Fix the values for m and n. One creates a partial model for the corresponding (m, n) with only
constraints (1) and (2). This is called pre-processing. To save time, pre-processed models can be
reused when the candidate c,,, the partial profile P, or both change. To solve a specific problem,
one loads the appropriate pre-processed model and updates it by adding constraints (3) and (4)
before solving it.

4.4 Three-Phase Computation of the Set of Possible Winners

A straightforward way to compute the set of possible winners PW(r, P) is to execute the compu-
tation described in Section 4.3 above m times, once for each candidate. We now describe a more
efficient method that uses pruning and early termination techniques, and heuristics to quickly iden-
tify clear possible winners. This method involves three phases, summarized here and discussed in
detail below:

(1) Use NW(r,P) to identify a subset of possible winners C;l,w and to prune clear non-winners

Cllsr' Pass the remaining C! = C \ (C},W U Cllsr) to the next phase.

(2) Use a heuristic to construct a completion in which ¢ € C! is a winner. Add all candidates for
which such a completion is found to Cj,,, and pass the remaining C* = C' \ C},, to the next
phase.

(3) Invoke the subroutine described in Section 4.3 to check a possible winner for each ¢ € C?

using an ILP solver. Add all identified possible winners to CZW.

The final set of possible winners is C,,, U Cj,, U G},

Phase 1: Using the necessary winner algorithm. Let us denote by S;o;41(r, m) the sum of scores of
all candidates in some total voting profile: S;o;q;(r,m) = n 3.7, r(m, i). We will execute NW(r, P)
to compute the set of necessary winners, which are also possible winners. Recall that as part of
the NW(r, P) computation, we compute and record, for all ¢ € C, the best possible score Sp,4x(c) =
>.pep r(m,|Upp(c)|) of every candidate c. We can immediately identify candidates whose S;,;4x (c)
is highest as clear possible winners, and add them to le,w. Indeed, there is a completion T such
that St(c) = Smax(c) and for every candidate ¢’ # ¢, we have St(¢’) < Spmax(c’) < Smax(c) = St(c).
The candidate c is clearly a winner in this profile. Further, if S, 4, (c) > %S roral(r,m), then ¢ is also
a possible winner and is added to Cfl,w.

On the other hand, if S;,qx(c) < %Stoml(r, m), then c is not a possible winner, and it can be
pruned. Indeed, by the pigeonhole principle, in every completion there is a candidate with a score
higher than %Smml(r, m).

Further, consider the step in NW(r,P) where we execute competitions between pairs of can-
didates ¢ and w. During a competition, we minimize the score difference S(w) — S(c) over all
completions. We may observe that S(w) — S(c) > 0. That means that the score of ¢ will be strictly
less than the score of w in every completion. This allows us to prune c as a non-winner, adding ¢
to C!

Isr®

Phase 2: Constructing a completion. Next, given a candidate c, we consider P = (Py, ..., P,) and
heuristically attempt to create a total voting profile T = (T3, . .., T,,) that completes P and in which
¢ is the winner. If such a T is found, then c is added to CIZ,W. To construct T, we complete each partial
vote P € P independently, as follows:

ACM/IMS Transactions on Data Science, Vol. 2, No. 3, Article 22. Publication date: July 2021.

Algorithmic Techniques for Necessary and Possible Winners 22:11

(1) For a given P, place ¢ at the worst possible rank in which it achieves its best possible score.
The reason for this is to minimize the scores of the items in Uprp(c) \ c.

(2) Place the remaining candidates from P into T. If multiple placements are possible, choose
one that increases the score of the currently highest-scoring candidates the least.

(3) Keep a list of candidates other than c that are the possible winners so far. In subsequent
completions, place these candidates as low as possible, minimizing their score.

In summary, we described a reduction of the problem of checking whether a candidate c is a
possible winner to an ILP and proposed a three-phase computation that limits the number of times
the ILP solver is invoked for a set of candidates C. We will show experimentally in Section 6.4 that
the proposed techniques can be used to compute the set of possible winners in realistic scenarios.

5 THE REPEATED SELECTION MODEL FOR POSET GENERATION

In this section we introduce a novel generative model for partially ordered sets, called the Repeated
Selection Model. It includes earlier generative models of partial orders as special cases via a suitable
choice of parameters. We regard RSM as being a model of independent interest, and we also use
it here as part of our experimental evaluation, described in Section 6. To start, we introduce the
Repeated Insertion Model (RIM) that is used for generating total orders in Section 5.1. We then
describe our novel RSM model in Section 5.2.

5.1 Preliminaries: The Repeated Insertion Model (RIM)

In this section we represent total orders using rankings, that is, ordered lists of items indexed by
position. We will use o, 7, and so on to denote rankings. We will use (i) to refer to an item at
position i in o, and we will use 6~!(a) to denote the position of element a in o. When describing
iterative algorithms, for convenience of presentation we will denote by o; the value of o at step i.

The RIM is a generative model that defines a probability distribution over rankings due to
Doignon et al. [9]. This distribution, denoted by RIM(o,II), is parameterized by a reference rank-
ing o and a function II, where II(i, j) is the probability of inserting o (i) at position j. Here, IT is a
matrix where each row corresponds to a valid probability distribution (i.e., the values in a row sum
up to one). Algorithm 2 presents the RIM sampling procedure. It starts with an empty ranking z,
inserts items in the order of &, and puts item & (i) at the j** position of the currently incomplete
7 with probability II(i, j). The algorithm terminates after m iterations and outputs 7, a total order
over the items drawn from o.

ALGORITHM 2: RIM(o, IT)

1: Initialize an empty ranking = = ().

2: fori=1,...,mdo

3. Select a random position j € [1,i] with a probability I1(i, j)
4. Insert o(i) into 7 at position j

5. end for

6: return 7

Example 5.1. RIM({a, b, c),II) generates 7 = (b, ¢, a) as follows:
e Initialize an empty ranking 7o = ().
e Atstep 1, 71 = (a) by inserting a into 7, with probability IT(1,1) = 1.
o Atstep 2, T, = (b, a) by inserting b into 7, at position 1 with probability I1(2, 1).
o Atstep 3, 7 = (b, c, a) by inserting ¢ into 7, at position 2 with probability I1(3, 2).

ACM/IMS Transactions on Data Science, Vol. 2, No. 3, Article 22. Publication date: July 2021.

22:12 V. Chakraborty et al.

The overall probability of sampling 7 is Pr(z | {a,b,c),IT) = I1(1,1) - I1(2, 1) - II(3, 2). Note that
this particular sequence of steps is the only way to sample (b, ¢, a) from RIM({a, b, c), IT).

The Mallows model [16], MAL(o, ¢), ¢ € (0, 1], is a special case of RIM. As a popular preference
model, it defines a distribution of rankings that is analogous to the Gaussian distribution: the
ranking o is at the center, and rankings closer to o have higher probabilities. Specifically, the
probability of a ranking 7 is given by

¢dist(a,r)
1-(1+¢) - (1+¢+¢%)...(A+--+¢m 1)’ @

Here, dist(o, t) is the Kendall-tau distance between o and t: dist(o,7) = |(a,a’) | a >4 d/,
a’ >, a|, that is, the number of preference pairs (a, a’) that appear in the opposite relative order in
o and 7. The expression in the denominator of Equation (7) is the normalization constant, which
we will find convenient to denote Zy ,,. When ¢ — 0, the probability mass is concentrated around
the reference ranking o; when ¢ = 1, all rankings have the same probability; that is, MAL(0, 1) is
the uniform distribution over rankings.

As was shown in [9], RIM(o,1I) is precisely MAL(ao, ¢) when I1(i, j) = W That is, the
Mallows model is a special case of RIM, and so RIM can be used as an efficient sampler for Mallows.

Pr(z|MAL(o, ¢)) =

5.2 The Repeated Selection Model (RSM)

The RSM is a generative model that defines a probability distribution over posets. Intuitively, in
this model we iteratively select a random item and randomly choose whether it succeeds each
of the remaining items. More formally, an instance of this distribution, denoted, RSM(ao, 11, p), is
parameterized by three elements:

e areference ranking o of length m,

e a selection probability function II, where II(i, j) is the probability of selecting the j'* item
among the remaining items at step i, and

e a preference probability function p : {1,...,m — 1} — [0, 1] that determines the probability
p(i) that the i*" selected item precedes (is preferred to) each of the remaining items.

We view II as a matrix where each row corresponds to a valid probability distribution (i.e., the
values in a row sum up to one) and the i — 1 rightmost entries in the ith row are zero (i.e., for all i
and for all j > m — i + 1, we have II(i, j) = 0).

Example 5.2. An example is the following combination of parameters:

o ={a,b,c)
0.5 0.3 0.2
II1=(06 04 0
1.0 0 0

p(1) =03 p(2) =0.4

Algorithm 3 presents the RSM sampling procedure. At each step, we select a random candidate ¢
and remove it from o. Hence, when we begin the ith step, there are m — i + 1 remaining candidates
in o. The choice of ¢ in the ith step is via the probability distribution in the i*" row of the selection
probability matrix IT (line 4 of Algorithm 3). Once ¢ is selected, RSM decides whether to add a
preference ¢ > d, where d is a candidate from the remaining o, with probability p(i); note that
decisions of ¢ > d are probabilistically independent for different candidates d (lines 6-8 of Algo-
rithm 3). Note that the preferences are always made from candidates selected earlier to candidates
selected later; hence, the resulting set of preferences induces a valid partial order.

ACM/IMS Transactions on Data Science, Vol. 2, No. 3, Article 22. Publication date: July 2021.

Algorithmic Techniques for Necessary and Possible Winners 22:13

ALGORITHM 3: RSM(a, p, IT)

1: Initialize an empty poset 7 = ().

2: fori=1,...,m—1do

3. Select a random position j € [1,m — i + 1] with a probability II(i, j)
4. Select candidate ¢ = o (j)

5. Remove ¢ from o (which now contains |o| = m — i candidates)

6

7

fork=1,...,m—-ido
Add the pair ¢ > o (k) to T with probability p(i) (or leave it out with probability 1 — p(i))
8: end for
9: end for
10: return the transitive closure of T

Example 5.3. Continuing Example 5.2, the model RSM({a, b, ¢),I1, p) can generate the poset T =
(b>a,a>c,b> c)asfollows:

o Initialize an empty poset 7 = ().

e Atstepi = 1, select b with probability II(1, 2) = 0.3 and remove it from o, setting o1 = (a, c).
Then, add the pair b > a to t with probability p(1) = 0.3, and do not add the pair b > cto =
with probability 1 — p(1) = 0.7.

o Atstep i = 2, select a with probability I1(2, 1) = 0.6 and remove it from o, setting o, = (c).
Finally, add the pair a > ¢ to = with probability p(2) = 0.4.

e Take the transitive closure of 7 and return (b > a,a > ¢, b > c).

The probability of sampling 7 in this way is I1(1, 2) - p(1) - (1 —p(1)) - I1(2,1) - p(2) = 0.01512.

Note that the same 7 can be generated by RSM({a, b, ¢), I, p) using a different sequence of steps,
thus yielding a different probability. In our example there is one other way to derive 7: at step
i =1,add b > c to T with probability p(1). This happens with the probability II(1,2) - p(1) - p(1) -
I1(2,1) - p(2). These are the only two possible derivations of 7 in our example. These yield the total
probability

Pr(b>a>c|{ab,c),ILp) =11(1,2) - p(1) - II(2,1) - p(2) = 0.0216.

In the general case, however, it is not clear whether this probability can be computed efficiently.
In particular, the probability of a poset may be due to all the linear extensions of the poset.

Importantly, RSM includes several generative models of partial orders as special cases via a
suitable choice of parameters. For example, p = (1,...,1,0,...,0) with k ones will generate a top-
truncated partial order, whereas p = (0,...,0,1,...,1) with k ones will generate a partial chain
over a subset of k items. Moreover, a uniform p gives rise to the generative model referred to as
Method 1 of Gehrlein [10]. Figure 2 compares these probability distributions empirically. Finally,
as we show below, the Mallows model is also a special case of RSM.

THEOREM 5.4. For a given ¢ € (0,1], and for p(i) = 1 for all i, we have that RSM(o, 1L, p) is
precisely MAL(o, ¢), when for all i and for all j, we have that I1(i, j) = ifj<m-i+1,
andI1(i,j) = 0,ifj>m—i+ 1.

¢!
th;n—i-fl ¢k_1)
=1

Proor. First, observe that because p(i) = 1 for all i, RSM(o,II, p) will generate total orders.
Further, observe that, although an arbitrary poset can be generated by RSM in multiple ways
(as demonstrated by Example 5.3), there is only one way to obtain a total order (ranking). We
will show by induction on the number of candidates m in o that Pr(z | RSM(¢,11,p)) = Pr(z |

ACM/IMS Transactions on Data Science, Vol. 2, No. 3, Article 22. Publication date: July 2021.

22:14 V. Chakraborty et al.

MAL(o, ¢)). Recall from Equation (7) that Pr(z | MAL(o, ¢)) = ¢d"“("’f)/Z¢,m, where Zg ,, is a
normalization constant, and dist(o, t) is the Kendall-tau distance between o and t: dist(o, 1) =
[(a,a") | a >4 a’,a’ > a|, thatis, the number of preference pairs (a, a’) that appear in the opposite
relative order in ¢ and 7. For notational convenience, we will denote by o_, a subranking of o
with item a removed. Further, we will denote by I1_; _; a projection of the matrix IT with the i
column and j** row removed.

Base case. When m = 1, both RSM and Mallows generate a single ranking with probability 1.

Inductive step. Suppose that RSM and Mallows assign the same probability to the subranking of
some 7 with the first element (1), denoted 7y, removed, and with ¢ and IT adjusted accordingly:
¢)dist(a,rl,r,rl)
Z¢,m—1
Let us now consider the ranking 7 of length m, and observe that dist(z, o) = dist(t_,,,0-7,) +

o7 (r;) — 1, where 67! (r;) is the position of element 7; in o. Moreover, the probability to select ;
at the first step of RSM is given by

Pr(z_z | RSM(0 -7, 11—, p)) = Pr(z—r, | MAL(0—¢,, 9)) = (8)

o (m)-1

- >m Pr-1”
Combining Equations (8) and (9), and recalling the expression for Zy ,, from Equation (7), we
obtain the following probability for 7 :

Pr(z | RSM(a,I1,p)) = II(1, 07 (11)) X Pr(z_, | RSM(0—7,, TI_1._m,)
¢o’1(n)—l ¢dist(a_,1,r_rl) d)dist(‘t,a)
= P = X =
i ¢ Zg,m-1 Zg.m
The proof by induction concludes and the theorem is proven.]

(1,07 (m)) ©)

= Pr(7 | MAL(a, ¢)).

6 EXPERIMENTAL EVALUATION

All experiments were carried out on an Intel(R) Xeon(R) CPU E5-2680 v3 @ 2.50GHz, with 412 GB
of RAM, 20 hyper-threaded cores running two threads per core, running Ubuntu 16.04.6 LTS. We
used Python 3.5 for our implementation, and the solver Gurobi v8.1.1 [11] for solving the ILP
instances produced by the reduction from instances of the possible winner problem.

6.1 Experimental Datasets and Scoring Rules

Real datasets. We used two real datasets in our experimental evaluation, travel and dessert.

The Google Travel Review Ratings dataset (travel) [18] consists of average ratings (each between
1 and 5) issued by 5,456 users for up to 24 travel categories in Europe. For each user, we create
a set of preference pairs such that items in each pair have different ratings (no tied pairs). Items
for which a user does not provide a rating are not included into that user’s preferences. Because
preferences are derived from ratings issued by individual users, there cannot be any cycles in the
set of preference pairs corresponding to a given user.

The dessert dataset was collected by us. It consists of user preferences over pairs of eight desserts,
collected from 228 users, with up to 28 pairwise judgments per user. For each pair, users indicated
their confidence in the preference using a sliding bar. This enabled us to create several voting
profiles based on this data, each corresponding to a particular confidence threshold. With a high
confidence threshold, we keep fewer pairs and obtain a sparse profile, and with a low confidence
threshold, we keep more pairs and obtain a very dense profile. Because preferences are collected

ACM/IMS Transactions on Data Science, Vol. 2, No. 3, Article 22. Publication date: July 2021.

Algorithmic Techniques for Necessary and Possible Winners 22:15

pairwise, there can be cycles. We check the set of preferences of each user and only keep those that
are acyclic for the experiments in this article, discarding all preferences of users whose preferences
contain cycles.

Synthetic datasets. We use three different types of synthetic voting profiles, namely, partial
chains, partitioned preferences, and RSM Mix . We now describe the data generation process for
each.

Recall from Definition 2.2 in Section 2 that a partial chain on a set C is a partial order on C
that consists of a linear order on a non-empty subset C” of C. Further, recall that a partitioned
preference on a set C is a partial order on C with the property that C is partitioned into disjoint
subsets Ay, ..., Ay such that (a) every element from A; is preferred to every element from Aj, for
i < j < q, and (b) the elements in each A; are pairwise incomparable.

We are given the set of candidates C = {cy, ¢, ¢3, . . ., ¢y } and the number of voters n. To generate
a partial chains profile or a partitioned preferences profile, we start with a mixture of three Mallows
models, each with ¢ = 0.5, with a randomly chosen o of size m, and covering approximately %
of the voters, and generate a complete voting profile T = (T3, ..., T,) of total orders on C. Then,
to generate a partial chains profile, for each total order T;, choose d € [0,m — 2] uniformly at
random, and drop d candidates from T; by selecting one uniformly at random from the remaining
candidates over d iterations. To generate a partitioned preferences profile, for each T;, choose the
number g of non-empty partitions uniformly at random from the set [2, m]. To partition T;, select
q — 1 positions between 2 and m uniformly at random without replacement, with each position
corresponding to the start of a new partition. Drop the order relations between candidates in the
same partition.

To generate an RSM Mix voting profile, we use a mixture of three RSMs (as described in Section 5),
each covering % of the voters, with selection probability IT; ; corresponding to the Mallows model
(¢ = 0.5, randomly chosen o of size m). For each of the three RSMs, we draw the preference
probability p(m) uniformly from [0, 1] for each m.

We use a mixture of three Mallows models, each covering approximately % of the voters as there
is no significant difference (Student’s t-test, p > 0.05) between the running times with a change
in the number of Mallows models. To validate this, we generated five partial chain profiles, each
using a mixture of three, six, and nine Mallows models, with m = 25 candidates and n = 10,000
voters, and used the Borda scoring rule. We did the three-phase computation of possible winners
on these datasets. Similarly, there is no significant difference (Student’s t-test, p > 0.05) between
running times when RSM Mix is generated with a mixture of three, six, and nine RSMs using the
same setup. Overall, there is no effect of varying the number of Mallows models or RSMs on the
running times.

There is also no significant difference (Student’s t-test, p > 0.05) between the running times
with a change in the distribution of the proportion of voters each model covers when using a
mixture of three Mallows models. To validate this, we generated five partial chain profiles, each
using a mixture of three Mallows models to create equally divided, evenly peaked, and unevenly
peaked datasets, with m = 25 candidates and n = 10, 000 voters, and used the Borda scoring rule.
Equally divided, evenly peaked, and unevenly peaked datasets distribute the voters as follows:
{33%,33%, 33%}, {25%, 50%, 25%}, and {30%, 60%, 10%}, respectively. We did the three-phase compu-
tation of possible winners on these datasets. Similarly, there is no significant difference (Student’s
t-test, p > 0.05) between running times when RSM Mix is generated using a mixture of three RSMs,
with each RSM covering a varying proportion of voters as discussed.

Scoring rules. We evaluated the performance of our techniques for three positional scoring rules,
namely, the plurality rule, the 2-approval rule, and the Borda rule. We chose these rules for two

ACM/IMS Transactions on Data Science, Vol. 2, No. 3, Article 22. Publication date: July 2021.

22:16 V. Chakraborty et al.

Table 1. Complexity of the Possible Winners (PW) and Necessary Winners (NW) Problems, and Their
Restrictions to Partitioned Preferences (PW-PP), Top-Truncated Ballots (PW-TTB), and Partial Chains
(PW-PC) w.r.t. plurality, veto, 2-Approval, and Borda Rules

Scoring Rule PW PW-PP PW-TTB PW-PC NW (All Kinds)
Plurality & Veto P P P P P
2-Approval NP-complete P P NP-complete P
Borda NP-complete NP-complete NP-complete NP-complete P

1.07 & Method 1

| e Method 2
0.8 e RSM
2
% 0.6
T
o} 04‘
0.2
0.0

00 02 04 06 08 10
mean probability

Fig. 2. Density distribution of RSM, compared to two poset generation methods from Gehrlein [10].

reasons. First, they are arguably among the most well-known and extensively studied positional
scoring rules. Second, the plurality rule and the 2-approval rule are prototypical examples of
bounded-value rules, that is, rules in which the scores are of bounded size (in this case, the bound
on the size is 2), while the Borda rule is a prototypical example of an unbounded-value rule; that
is, the scores may grow beyond any fixed bound. Note that we also conducted experiments for
the veto rule and found out that performance followed the same trends as those for plurality. We
remind the reader that the results about the complexity of the necessary winners and the possible
winners with respect to the plurality rule, the 2-approval rule, and the Borda rule are summarized
in Table 1 in Section 2.

6.2 Validation of the Repeated Selection Model (RSM)

In this section we compare the RSM with Method 1 and Method 2 from Gehrlein [10]. Our first

comparison is of the empirical distribution of poset density, defined as d = % = WDA)’ where

m is the number of items, and D is the total number of preference pairs in the partial voting
profile P. Figure 2 presents this comparison for 10 candidates and 50 voters. We observe that the
RSM generates partial orders over a wider range of densities than either of the two methods from
Gehrlein.

We also conducted an experiment to verify that RSM is sufficiently flexible to represent real
partial voting profiles. To do this, we extended the methods of Stoyanovich et al. [19] to fit a single
RSM to the dessert and travel datasets and compared the goodness of fit to that of Method 1 and
Method 2 from Gehrlein [10]. For each dataset, we compute the negative log-likelihood using the
voters for whom we know both the real subranking 7 and the synthetically generated subranking

’

T:
18 ,
NLL = - Ei log(Pr(z; | 7;)).

Our results are summarized in Table 2 and confirm that RSM fits these real datasets more
closely than other methods, as quantified by negative log-likelihood (N £LL), with lower values

ACM/IMS Transactions on Data Science, Vol. 2, No. 3, Article 22. Publication date: July 2021.

Algorithmic Techniques for Necessary and Possible Winners 22:17

Table 2. Comparison of Goodness-of-Fit of RSM
(Section 5), and Methods 1 and 2 from Gehrlein [10],
on Real-world Datasets

Dataset NLL
RSM | Method 1| Method 2
Travel 9.5 10.4 10.4
Dessert (Sparse) | 12.5 12.9 14.7
Dessert (Dense) | 18.7 19.1 19.8

N L L stands for negative log-likelihood, with lower values
corresponding to better fit.

10! | mm RSM Mix > 10! | mm RSM Mix > 10! | mm RSM Mix -~
mm partitioned m mm partitioned mm partitioned
™ 100 mm partial chain , > 100 mm partial chain ? ™ 100 mm partial chain - T
Y o Py
£ £ £
> 1071 o 1071 o 1071
£ £ £
C C c
S 102 51072 S102| _
2 2 B 2
1073 1073 1073 |+
10t 102 103 10*% 101 102 103 10% 10 10?2 103 10*
voters # voters # voters
(a) plurality (b) 2-approval (c) Borda

Fig. 3. Running time of the necessary winners computation for 100 candidates and between 10 and 10,000
voters, for three positional scoring rules.

corresponding to better fit. Note that all methods fit the travel dataset better as compared to the
dessert dataset because the former contains partitioned preferences with missing candidates.

6.3 Necessary Winners

In this section, we evaluate the performance of an optimized version of the polynomial-time algo-
rithm by Xia and Conitzer [20], as described in Section 3 for three positional scoring rules: plurality,
2-approval, and Borda.

We start with experiments that demonstrate the impact of the number of voters n and the num-
ber of candidates m on the running time of the optimized necessary winners algorithm described
in Section 3. In Figure 3, we set m = 100, vary n between 10 and 10,000 on a logarithmic scale, and
show the running time for each of the rules, plurality, 2-approval, and Borda, and for each family of
synthetic datasets as a box-and-whiskers plot. We observe that the computation is efficient: RSM
Mix is the most challenging and completes in 10 seconds or less for 10,000 voters across all scoring
rules. The running time increases linearly with n.

Next, we analyzed the speed-up achieved by the optimized necessary winners algorithm for
n = 10,000 voters, with m ranging from 10 to 200 on a linear scale. Figure 4 shows these results in
comparison to a baseline, where we reuse computation of Urp(c) and DownNp(c) across candidates
but do not re-order candidates in a competition, and also do not optimize the computation of
Upp(c) and Downp(c) based on the structure of P. We observe that the optimized implementation
outperforms the baseline by a factor of 10 to 20 in most cases. Overall, speed-up improves with
increasing number of candidates, and partial chains and partitioned preferences datasets show the

ACM/IMS Transactions on Data Science, Vol. 2, No. 3, Article 22. Publication date: July 2021.

22:18 V. Chakraborty et al.
30 | == RSM Mix 30 | == RSM Mix 30 | == RSM Mix
mm partitioned mm partitioned mm partitioned
mm partial chain mm partial chain mm partial chain
S 20 520
o kel
(0] (0]
(0] (0]
aQ Q
%) »
10 10
Pl TS h l :

10 50 100 150 200
candidates

(a) plurality

10 50 100 150 200
candidates

(b) 2-approval

10 50 100 150
candidates

(c) Borda

200

Fig. 4. Speed-up factor of the optimized necessary winners computation over the baseline, for 10,000 voters,
and between 10 and 200 candidates, for three positional scoring rules. Performance is improved by a factor
of 10 to 20 in most cases and is highest for partial chains and partitioned preferences.

highest speed-up. We see significant variability in Figure 4(a), because some of the instances had
necessary winners and others did not.

We also analyzed the running time and observed that this computation is efficient: RSM Mix
completes in under 40 seconds for m = 200 for plurality and 2-approval, and for all except one case
of Borda, where it takes 60 seconds. For partitioned preferences and partial chains, the computation
completes in under 8.5 seconds and 2 seconds, respectively, pointing to the effectiveness of the
optimizations that use the structure of P.

Finally, the running times were interactive on real datasets: 0.006 seconds for all scoring rules
on dessert and 0.28 seconds on travel. We achieved a factor of 2 to 2.5 speed-up over the baseline
version for dessert, and a factor of 5 to 6.7 speed-up for travel. Speed-up was most significant for
Borda, with running time decreasing from 1.87 seconds to 0.28 seconds.

6.4 Possible Winners

In this section, we evaluate the performance of appropriate methods for the computation of pos-
sible winners (PW) under plurality, 2-approval, and Borda.

Plurality. To compute PW under plurality, we implemented an optimized version of the
polynomial-time algorithm by Betzler and Dorn [3], as described in Section 4.1. Figure 5 shows
the running time of our implementation. In Figure 5(a), we set m = 25 and vary n between 10 and
10,000 on a logarithmic scale, while in Figure 5(b), we set n = 10,000 and vary m between 5 and 25
on a linear scale. We observe that this algorithm is efficient: most instances complete in less than
0.5 second, with the exception of a single instance that takes just over 1 second. The running time
is higher when there are more possible winners. For this reason, computation is fastest on parti-
tioned preferences datasets and slowest on partial chains datasets. (Note that we set m lower for
PW experiments than for NW, where m went up to 200, to have the same experimental setting for
plurality as for 2-approval and Borda, presented later in this section. A high value of m is infeasible
for the latter rules because of the intrinsic complexity of the problem.)

2-Approval and Borda using three-phase computation. As discussed in Section 2, computing PW
under the Borda rule is NP-complete both for voting profiles consisting of partial chains and for vot-
ing profiles consisting of partitioned preferences. Furthermore, computing PW under 2-approval
is NP-complete for voting profiles consisting of partial chains but is polynomial-time solvable for
voting profiles consisting of partitioned preferences. In view of the intractability implied by the

ACM/IMS Transactions on Data Science, Vol. 2, No. 3, Article 22. Publication date: July 2021.

Algorithmic Techniques for Necessary and Possible Winners 22:19

10° | == RSM Mix 151

mm partitioned

mm RSM Mix
mm partitioned

@ mm partial chain E mm partial chain
[0) 10—1< o) 1.0
1= £
2 2
< 10724 € 051
2 3
3 ,ﬂi{'}/&
10734 : ' ' ' 04) * ' ' ' ' !
10! 102 10° 10* 5 10 15 20 25
voters # candidates
(a) 25 candidates (b) 10,000 voters

Fig. 5. Running time of the computation of the set of possible winners on plurality, using an optimized
implementation of the algorithm from Betzler and Dorn [3]. Most instances complete in less than 0.5 seconds.
Running times are higher when there are more possible winners. For this reason, computation is fastest on
partitioned preferences and slowest on partial chains.

aforementioned NP-complete cases, we use the three-phase method described in Section 4.4 that
may invoke the ILP solver for difficult cases. We evaluate the performance of this method here,
demonstrating the impact of the number of voters n and the number of candidates m on the run-
ning time of PW. (Note that we include 2-approval for partitioned preferences into the comparison,
for consistency of presentation.) We fix m at 25 and vary n between 10 and 10,000 on a logarithmic
scale, and then fix n at 10,000 and vary m between 5 and 25 on the linear scale. Even with these
modest values of m, the ILP solver can take a very long time. Thus, to make our experimental eval-
uation manageable, we set an end-to-end cut-off of 2,000 seconds per instance. In what follows,
we report the running times of the instances that completed within the cut-off and additionally
report the percentage of completed instances.

Figures 6(a) and 7(a) show the running time as a function of the number of voters for 2-approval
and Borda, respectively. The running time increases linearly with the number of voters. Inter-
estingly, partial chains datasets take as long or longer to process as RSM Mix datasets. This is
because Phase 1 of the three-phase computation is more effective for RSM Mix, with fewer candi-
dates passed on to Phase 2. Phases 1 and 2 are effective in pruning non-winners and in identifying
clear possible winners. Of the 75 instances we executed for this experiment for each scoring rule,
only 13 (17%) needed to execute Phase 3 (i.e., invoke the ILP solver) for 2-approval, and only 9 (12%)
for Borda, with at most three candidates to check. Of the nine instances that reached Phase 3 for
Borda, six timed out at 2,000 seconds. No other instances timed out in this experiment. Instances
reaching Phase 3 are responsible for the high variability in the running times. For 2-approval,
all instances that reached Phase 3 computed in under 148 seconds (median 8.46 seconds, mean
30.69 seconds, stdev 48.72 seconds). For Borda, for the three instances that executed Phase 3 and
did not time out, the running times were 6 seconds, 15 seconds, and 381 seconds. In contrast, all
remaining instances—those that did not execute Phase 3—computed in under 53 seconds (median
2.44 seconds, mean 9.50 seconds, stdev 15.14 seconds).

Figures 6(b) and 7(b) show the running times as a function of the number of candidates under
2-approval and Borda. We make similar observations here as in our discussion of Figures 6(a)
and 7(a), noting that only nine instances reached Phase 3 for 2-approval, and only four reached
Phase 3 for Borda. These instances, all RSM Mix, took longer to run and contributed the most to
running time variability.

ACM/IMS Transactions on Data Science, Vol. 2, No. 3, Article 22. Publication date: July 2021.

22:20 V. Chakraborty et al.

== RSM Mix 150 | g RSM Mix 45| &
10? | mm partitioned mm partitioned : .
@ mm partial chain @ mm partial chain @ = - \
® © ' © =
E 2 100 23 :
- 100 =} =) -
2 2 2 =
c c c -
5 5% ER
10-2 ' == 3-phase
g mm network-flow
0 —r -] 0
10t 102 103 10*% 5 10 15 20 25 4 8 12 16 20 24
voters # candidates # partitions
(a) 25 candidates (b) 10,000 voters (c) 25 candidates & 10,000 voters

Fig. 6. Running time of the three-phase computation of the set of possible winners on 2-approval scoring
rule. (a) None of the 75 instances timed out at 2,000 seconds. These were among only 13 instances (9 RSM
Mix and 4 partial chain) that needed to execute the ILP solver in Phase 3. (b) None of the 75 instances timed
out at 2,000 seconds. These were among only nine instances (all RSM Mix) that needed to execute the ILP
solver in Phase 3. (c) Comparison of three-phase computation with polynomial-time algorithm (based on
flow network and theoretical results in [12]) by varying the number of partitions in each instance.

' 50 | == RSM Mix
10? mm partitioned
™ ™ mm partial chain
2 /ﬁ 2 34
=1 0 —
o 10 o
£ c
[C
S c 17
c == RSM Mix 2
1072 mm partitioned
mm partial chain
10t 102 10° 10% 0 5 10 15 20 25
voters # candidates
(a) 25 candidates (b) 10,000 voters

Fig. 7. Running time of the three-phase computation of the set of possible winners on Borda scoring rule.
(a) Six (all RSM Mix) out of 75 instances (8.0%) timed out at 2,000 seconds. These were among only nine
instances (all RSM Mix) that needed to execute the ILP solver in Phase 3. (b) Four (all RSM Mix) out of 75
instances (5.3%) that needed to execute the ILP solver timed out at 2,000 seconds.

2-Approval on partitioned preferences: three-phase computation vs. network flow. For the
2-approval rule on voting profiles consisting of partitioned preferences, we also implemented
Kenig’s [12] polynomial-time algorithm, which is based on network flow, and we compared its
performance to that of three-phase computation. Figure 6(c) shows the running times as a func-
tion of the number of partitions for instances containing 25 candidates and 10,000 voters. None
of the 30 instances needed ILP (Phase 3) while using the three-phase computation. Overall, our
three-phase approach is more general in terms of the datasets it handles, and it outperforms the
polynomial-time network-flow algorithm for partitioned preferences.

Drilling down on the phases of the three-phase computation. Now, we drill down on each phase
of the three-phase computation to study the effectiveness of each phase:

ACM/IMS Transactions on Data Science, Vol. 2, No. 3, Article 22. Publication date: July 2021.

Algorithmic Techniques for Necessary and Possible Winners 22:21

Table 3. Percentage of Candidates Pruned at the End of Each Phase of the Three-phase
Computation (Cumulative Percentages Are Written in the Brackets)

Dataset Rule Phase 1 Phase 2 Phase 3 (ILP)
partal chain |- s o)
Partitioned 27%3:1(2}0[ZEIZZ 3;.712 ((}92(.)27) 0.1% (100%)
RS oA 1% (00

1. Effectiveness of each phase: We measured the effectiveness of each phase of the three-
phase computation (Table 3) by measuring the percentage of candidates pruned at the end of
each phase. We observed that on average, 99.18% of the candidates are pruned after the first two
phases that run in time polynomial in the number of candidates. Specifically, we make two key
observations: (i) Phase 1 (reusing the NW algorithm) is most effective when there are few pos-
sible winners, and (ii) RSM Mix is the toughest dataset to handle as it needs Phase 3 (ILP) the
most.

2. Effectiveness of the polynomial-time computation of the first two phases: Next, we
specifically measured the effectiveness of the first two phases of the three-phase computation,
which run in polynomial time in the number of candidates, on a larger number of RSM profiles. To
do so, we calculate the proportion of profiles for which the three-phase computation terminates
after the first two phases, under the Borda scoring rule. We created 10,000 profiles consisting of
100 voters and 10 candidates using a mixture of three RSMs, as described in Section 6.1.

Figure 8 presents the density distribution of the resulting posets (as in Figure 2) and highlights
the instances for which PW computation terminated after two phases in purple and those for
which all three phases were necessary in yellow. In summary, PW terminated after two phases
for 91.62% of the instances. Phase 3 was needed primarily when the ¢ parameter was low and the
average density was medium, or when the ¢ parameter and the average density were both high.
Profiles with low average density always terminated after the second phase.

3. Effectiveness across different data generation methods: We also compared the average
running time of the first two phases of the PW algorithm using RSM profiles with profiles gener-
ated using Gehrlein’s methods. In this experiment, we generated 10,000 profiles using a mixture
of three RSM models, with m = 10 candidates and n = 100 voters, and used the Borda scoring rule.
RSM profiles generally take more time across different values of ¢ (Figure 9(a)) and across differ-
ent poset densities (Figure 9(b)) as RSM is more generalized (Figure 2). This finding once again
underscores that RSM is able to generate interesting posets, which may be more challenging to
process than those generated with alternative methods. In addition, it also underscores the overall
effectiveness of our three-phase computation, irrespective of the method used.

PW on real datasets. Finally, we computed PW for the real datasets dessert and travel using three-
phase computation and found multiple possible winners for all scoring rules. In all cases, winners
were determined in Phases 1 and 2 of the computation, and the ILP is never invoked. All executions
took under 23 seconds.

7 CONCLUDING REMARKS

The contributions made in this article can be summarized as follows:

ACM/IMS Transactions on Data Science, Vol. 2, No. 3, Article 22. Publication date: July 2021.

22:22 V. Chakraborty et al.

® NolLP
0.8 ILP

00 02 04 06 08 1.0
mean probability

Fig. 8. 91.62% of 10,000 RSM profiles, with 10 candidates and 100 voters, found the entire set of possible
winners under the Borda scoring rule after the first two phases of pruning without the need of using ILP.

0.12 Vethod 1
—— Metho
—— Method 2 012
—0.08| — RSM 5
0 £0.08
[0) [0)
£ £
+= 0.04 = 0.04| — Method 1
—— Method 2
— RSM
0.00 0.00
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
phi density
(a) (b)

Fig. 9. Average running times of the first two phases of three-phase computation, for 10,000 RSM profiles,
with 10 candidates and 100 voters, for the Borda scoring rule. Method 1 and Method 2 are from Gehrlein [10].
RSM generates challenging profiles for the computation of PW.

e We introduced new methods for generating partial orders that are of interest in their own
right, most notably, the Repeated Selection Model.

e Furthermore, we produced a rich set of datasets that can serve as benchmarks in other ex-
periments concerning incomplete preferences in computational social choice.

e We presented a number of algorithmic techniques for computing the necessary winners and
the possible winners for positional scoring rules in the presence of incomplete preferences.
We demonstrated that our techniques scale well in a variety of settings, including settings
in which computing the possible winners is an NP-hard problem.

The algorithmic techniques and the data generation methods presented here may find applica-
tions in other frameworks, including the framework introduced in [13] and studied further in [14],
which aims to bring together computational social choice and databases by supporting queries

about winners in elections together with relational context about candidates, voters, and candi-
dates’ positions on issues.

REFERENCES

[1] Dorothea Baumeister, Piotr Faliszewski, Jérome Lang, and Jorg Rothe. 2012. Campaigns for lazy voters: Truncated
ballots. In Proceedings of the 11th International Conference on Autonomous Agents and Multiagent Systems-Volume 2.
International Foundation for Autonomous Agents and Multiagent Systems, 577-584.

[2] Dorothea Baumeister and Jorg Rothe. 2012. Taking the final step to a full dichotomy of the possible winner problem
in pure scoring rules. Inf. Process. Lett. 112, 5 (2012), 186-190. https://doi.org/10.1016/.ipl.2011.11.016

[3] Nadja Betzler and Britta Dorn. 2010. Towards a dichotomy for the possible winner problem in elections based on
scoring rules. J. Comput. Syst. Sci. 76, 8 (2010), 812-836. https://doi.org/10.1016/j.jcss.2010.04.002

ACM/IMS Transactions on Data Science, Vol. 2, No. 3, Article 22. Publication date: July 2021.

https://doi.org/10.1016/j.ipl.2011.11.016
https://doi.org/10.1016/j.jcss.2010.04.002

Algorithmic Techniques for Necessary and Possible Winners 22:23

[4] Nadja Betzler, Susanne Hemmann, and Rolf Niedermeier. 2009. A multivariate complexity analysis of determining pos-
sible winners given incomplete votes. In Proceedings of the 21st International Joint Conference on Artificial Intelligence.
IJCAI, 53-58.

[5] Nadja Betzler, Rolf Niedermeier, and Gerhard J. Woeginger. 2011. Unweighted coalitional manipulation under the
Borda rule is NP-hard. In 22nd International Joint Conference on Artificial Intelligence. [JCAL

[6] Felix Brandt, Vincent Conitzer, Ulle Endriss, Jérome Lang, and Ariel D. Procaccia. 2016. Handbook of Computational
Social Choice. Cambridge University Press, New York, NY.

[7] Vishal Chakraborty and Phokion G. Kolaitis. 2020. The complexity of possible winners on partial chains. CoRR
abs/2002.12510 (2020). arXiv:2002.12510. https://arxiv.org/abs/2002.12510.

[8] Jessica Davies, George Katsirelos, Nina Narodytska, and Toby Walsh. 2011. Complexity of and algorithms for Borda
manipulation. In 25th AAAI Conference on Artificial Intelligence. AAAIL

[9] Jean-Paul Doignon, Aleksandar Peke¢, and Michel Regenwetter. 2004. The repeated insertion model for rankings:
Missing link between two subset choice models. Psychometrika 69, 1 (2004), 33-54.

[10] William V. Gehrlein. 1986. On methods for generating random partial orders. Oper. Res. Lett. 5, 6 (1986), 285-291.

[11] Optimisation Gurobi. 2019. Gurobi Optimizer Reference Manual. Gurobi Optimization LLC, Beaverton, OR. http://www.
gurobi.com/.

[12] Batya Kenig. 2019. The complexity of the possible winner problem with partitioned preferences. In Proceedings of
the 18th International Conference on Autonomous Agents and MultiAgent Systems (AAMAS’19), Edith Elkind, Manuela
Veloso, Noa Agmon, and Matthew E. Taylor (Eds.). International Foundation for Autonomous Agents and Multiagent
Systems, 2051-2053. http://dl.acm.org/citation.cfm?id=3332007.

[13] Benny Kimelfeld, Phokion G. Kolaitis, and Julia Stoyanovich. 2018. Computational social choice meets databases. In
Proceedings of the 27th International Joint Conference on Artificial Intelligence. AAAI Press, IJCAI 317-323.

[14] Benny Kimelfeld, Phokion G. Kolaitis, and Muhammad Tibi. 2019. Query evaluation in election databases. In Proceed-
ings of the 38th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems (PODS’19). ACM, 32-46.

[15] Kathrin Konczak and Jérome Lang. 2005. Voting procedures with incomplete preferences. In Proceedings of the [JCAI-
05 Multidisciplinary Workshop on Advances in Preference Handling, Vol. 20. IJCAL

[16] C.L.Mallows. 1957. Non-null ranking models. I. Biometrika 44, 1-2 (June 1, 1957), 114-130.

[17] Sergey Polyakovskiy, Rudolf Berghammer, and Frank Neumann. 2016. Solving hard control problems in voting sys-
tems via integer programming. Eur. . Oper. Res. 250, 1 (2016), 204-213.

[18] Shini Renjith, A. Sreekumar, and M. Jathavedan. 2018. Evaluation of partitioning clustering algorithms for processing
social media data in tourism domain. In 2018 IEEE Recent Advances in Intelligent Computational Systems (RAICS’18).
IEEE, 127-131.

[19] Julia Stoyanovich, Lovro Ilijasic, and Haoyue Ping. 2016. Workload-driven learning of mallows mixtures with pairwise
preference data. In Proceedings of the 19th International Workshop on Web and Databases. ACM, 8. https://doi.org/10.
1145/2932194.2932202

[20] Lirong Xia and Vincent Conitzer. 2011. Determining possible and necessary winners given partial orders. j. Artif.
Intell. Res. 41 (2011), 25-67. https://doi.org/10.1613/jair.3186

[21] Yongjie Yang. 2014. Election attacks with few candidates. In ECAI (Frontiers in Artificial Intelligence and Applications),
Vol. 263. I0S Press, 1131-1132.

Received May 2020; revised November 2020; accepted March 2021

ACM/IMS Transactions on Data Science, Vol. 2, No. 3, Article 22. Publication date: July 2021.

http://arxiv.org/abs/2002.12510
https://arxiv.org/abs/2002.12510
http://www.gurobi.com/
http://dl.acm.org/citation.cfm?id=3332007
https://doi.org/10.1145/2932194.2932202
https://doi.org/10.1613/jair.3186

